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What is the transcriptome?

mRNA tRNA rRNA snRNA

|||||||||||||||||||||||||||||||||||||||||||||||||||

Acts as adaptor Functions in various

Forms the ribosome
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Set of all RNA within a cell



Transcriptomics is the study of RNA in a cell

genome
>25000 Genes

{Genomics- Study of complete}

Transcriptomics- Study of
differential gene expression
>1,00,0000 Transcripts

Proteomics- Study of all the
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Two main transcriptomics techniques:
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What are the types of RNA-seq? |

Each cell type has distinct  gyppopulation expression

Single Cell Input expression profile variability of thousands of cells
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Average gene expression Cellular heterogeneity
from all cells masked

Bulk RNA-seq can be used to get a global idea of gene expression differences between samples.



scRNA-seq gives us cell-specific information
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Single-cell RNA-seq

Bulk RNA-seq

organ/ tissue \ \

We can get information about each individual berry (cell) vs. all the cells/signals blended together in a smoothie.
Steinheuer et al., 2021




scRNA-seq allows us to sequence specific cells from tissue
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We can sort cells using techniques from pipette to laser
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Hwang et al., 2021



Step 1: Microfluidics are used to isolate cells
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Barcoded beads are used to identify mRNA specific to each cell
Hwang et al., 2021



Step 2: After cell lysis, you make a cDNA library from RNA

Cell Lysis Reverse Transcription Sequencing Library
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Step 3: Amplify and sequence the cDNA library

Polymerase Chain
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Step 4: Preprocessing and data normalization
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Use bioinformatics tools to eliminate potential technical and biological variation, background noise, low quality
cells. Hwang et al., 2021



Confounding factors that must be accounted for
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Technical variation

Batch effect
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Technical variations to be removed before analysis
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Cell cycle effect: differential gene expression during the cell cycle

Observed

expression profile ~

Removing the
effect of cell cycle
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Step 5: Analyze the normalized data

Expression profile
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At the cell-level we can identify cell type and cell differentiation

Cell type identification
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We can use scRNA-seq to find gene ontology information

Cell Division
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Biological Molecular Cellular
Process Function Component

Pathway Involvement Elemental Task Location in Cell



How can we use scRNA-seq data in a clinical setting?

Tumor cell heterogeneity

"""""""""""""""""" (a) Minor resistant subpopulation
Treat EGFR-TKI

@ Resistant cells
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Tumor Heterogeneity & Drug Resistance Liquid Biopsy Diagnosis
Identification

Hwang et al., 2021



sCRNA-seq:

Expression profile
o coi MENN NEENN
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allows for the analysis of individual cells at both the cell- and gene-level.

celin i [ ]

o ’ can be used to identify cell types, study cell differentiation and infer gene
) ontology networks.

has numerous applications to the medical field; such as its use in tumor
heterogeneity and liquid biopsy diagnosis.




Questions?



Single-cell RNA-sequencing of zebrafish hair cells reveals
novel genes potentially involved in hearing loss — Qian et. al




Scientists Behind the
Science

First Authors

The Dong lab aims to identify novel
regulators of blood vessel formation in
embryonic development and tissue

] Liu Dong, PhD?

Nantong University |,




What iIs the structure of the human ear?

Temporal Semicircular

s Canals Vestibular

Nerve

Malleus
Pinna

Auditory
Nerve

Ear Canal
Ear Drum Cochlea

Outer Ear Mid Ear Inner Ear



What are the types of hair cells in the human ear?

Hair bundle of IHC

Cochlear Inner Hair Cochlear Outer Hair Vestibular
Cell (IHCs) Cell (OHCs) Epithelia



Where are these cells found In the inner ear?
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Where are the vestibular cells found In the inner ear?

——

Semicircular
Canals
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Vestibular
Epithelia




How do hair cells function in hearing?
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Normal Depolarized

Cilia detect mechanical vibrations and allow for neurotransmitter
release



What causes hearing loss?

Normal Hair Cells Damaged Hair Cells

Damaged hair cells and cilia dysfunction



Why use zebrafish as the model organism?
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Otic vesicle

Posterior Macula (hearing)
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Posterior Lateral Line
Anterior Lateral Line ‘A nterior Macula (balance)

anterior/utricular
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Abundance of hair cells with similar functions to mammals



What are the types of hair cells in zebrafish?
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inner ear hair cells neuromast hair cells
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Crista, Macula, and Neuromast Cells



Inner ear and Neuromast cells differ in shape

crista hair cells
(CHCs)

C macula hair cells

(MHCs)
R 14

D neuromast hair cells

(NHCs)




Inner ear and Neuromast cells differ In size
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Finding the molecular function of each cell type: Step 1

A

Tg(Brn3c:mGFP)
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What did the scRNA-seq reveal?

UMAPRP 2
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retinal ganghon call 1
relinal ganghion cell 2
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Number of cells in each cluster

What did the scRNA-seq reveal?
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Finding the molecular function of each cell type: Step 2
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Whole Mount In-Situ Hybridization (WISH) results

G tectb
A {
= 3 b
Tectb gene was Zpldla gene was Calmlb gene was
localized primarily in localized primarily in localized primarily in

macula cells crista cells neuromast cells



What was determined from the molecular analysis?

Total Marker Genes:
Cluster 0:|2352

Cluster 5:|1023
Cluster 7:|2029
Cluster 12:928

Cluster 0: mature neuromast hair cells
Cluster 5: macula hair cells

Cluster 7: young neuromast hair cells
Cluster 12: crista hair cells

Genes potentially related to hearing loss



What was determined from the molecular analysis?

abhd2b
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The marker genes in each cell cluster differ




What is the g

ene ontology of the different hair cells?
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Cluster 0: mature neuromast hair cells
Cluster 5: macula hair cells

Cluster 7: young neuromast hair cells
Cluster 12: crista hair cells



What are indications of mammalian hair cell function?

MET channel

CDH23

PCDH15

MET channels that are essential for hearing



Zebrafish hair cell’s expression of MET components
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How can we use this scRNA-seq data?

119 (100%)

96 (80.67%)

51 (42.86%)

() identified NSHL genes in human

() zebrafish orthologous genes

() genes expressed in zebrafish HCs

It can lead to genes of interest



What did analysis of capbg and genes provide?
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Down-regulation of both genes resulted in loss of hair cells



and mb genes provide?

What did analysis of
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What is the future direction of this study?

ey Looking at the role of down-regulating capbg and mb
- genes in hair cell activity as a whole
9
R What are the mechanisms of these genes in hearing
A ) loss?
{fﬁ;‘f ‘ / ,;?f,:f ,%;';f" A
g, %
= P How does each cell type individually affect hearing loss?



Summary

SCRNA seqguencing provides insight into the
different hair cell types of zebrafish

How can we use this scRNA-seq data?

Gene orthologs associated with hearing functions
Identified

Correlation between down-regulation of Capgb and
Mb genes and hearing function




Questions?
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