

Julia Carey & Michelle Conte

What is the transcriptome?

Set of all RNA within a cell

Transcriptomics is the study of RNA in a cell

Two main transcriptomics techniques:

RNA sequencing

Microarray

What are the types of RNA-seq?

Bulk RNA-seq can be used to get a global idea of gene expression differences between samples.

scRNA-seq gives us cell-specific information

We can get information about each individual berry (cell) vs. all the cells/signals blended together in a smoothie.

scRNA-seq allows us to sequence specific cells from tissue

We can sort cells using techniques from pipette to laser

Step 1: Microfluidics are used to isolate cells

Barcoded beads are used to identify mRNA specific to each cell

Hwang et al., 2021

Step 2: After cell lysis, you make a cDNA library from RNA

Polymerase Chain Reaction Illumina Next-Gen Sequencing

Step 4: Preprocessing and data normalization

Use bioinformatics tools to eliminate potential technical and biological variation, background noise, low quality cells.

Confounding factors that must be accounted for

Technical variation

Batch effect Cell-specific capture efficiency Amplification bias Dropout

Biological variation

Stochastic gene expression Environmental niche Cell cycle

Technical variations to be removed before analysis

Cell cycle effect: differential gene expression during the cell cycle

Can be removed by single-cell latent variable model (scLVM)

Step 5: Analyze the normalized data

Cluster cells with similar transcriptional profiles.

At the cell-level we can identify cell type and cell differentiation

Cell type identification

Hwang et al., 2021

We can use scRNA-seq to find gene ontology information

Biological Process

Pathway Involvement

Molecular Function

Elemental Task

Cellular Component Location in Cell

How can we use scRNA-seq data in a clinical setting?

Tumor Heterogeneity & Drug Resistance Identification

Liquid Biopsy Diagnosis

allows for the analysis of individual cells at both the cell- and gene-level.

can be used to identify cell types, study cell differentiation and infer gene ontology networks.

has numerous applications to the medical field; such as its use in tumor heterogeneity and liquid biopsy diagnosis.

Single-cell RNA-sequencing of zebrafish hair cells reveals novel genes potentially involved in hearing loss – *Qian et. al*

Scientists Behind the Science

First Authors

Fuping Qian

Guanyun Wei, PhD

The Dong lab aims to identify novel regulators of blood vessel formation in embryonic development and tissue regeneration.

What is the structure of the human ear?

What are the types of hair cells in the human ear?

Where are these cells found in the inner ear?

Where are the vestibular cells found in the inner ear?

How do hair cells function in hearing?

Cilia detect mechanical vibrations and allow for neurotransmitter release

What causes hearing loss?

Normal Hair Cells

Damaged Hair Cells

Damaged hair cells and cilia dysfunction

Why use zebrafish as the model organism?

Abundance of hair cells with similar functions to mammals

What are the types of hair cells in zebrafish?

Crista, Macula, and Neuromast Cells

Inner ear and Neuromast cells differ in shape

Inner ear and Neuromast cells differ in size

Finding the molecular function of each cell type: <u>Step 1</u>

mGFP

Labeling

What did the scRNA-seq reveal?

What did the scRNA-seq reveal?

Finding the molecular function of each cell type: <u>Step 2</u>

Whole Mount In-Situ Hybridization (WISH) results

Tectb gene was localized primarily in macula cells

Zpld1a gene was localized primarily in crista cells *Calm1b gene* was localized primarily in neuromast cells

What was determined from the molecular analysis?

 Cluster 0:
 2352

 Cluster 5:
 1023

 Cluster 7:
 2029

 Cluster 12
 :928

Cluster 5: macula hair cells Cluster 7: young neuromast hair cells Cluster 12: crista hair cells

Genes potentially related to hearing loss

What was determined from the molecular analysis?

The marker genes in each cell cluster differ

What is the gene ontology of the different hair cells?

Cluster 0: mature neuromast hair cells Cluster 5: macula hair cells Cluster 7: young neuromast hair cells Cluster 12: crista hair cells

MET channels that are essential for hearing

Zebrafish hair cell's expression of MET components

Cluster 0: CDH23 and PCDH15 expression

Cluster 5: PCDH15 expression

How can we use this scRNA-seq data?

It can lead to genes of interest

What did analysis of capbg and mb genes provide?

Down-regulation of both genes resulted in loss of hair cells

What did analysis of capbg and mb genes provide?

What is the future direction of this study?

Looking at the role of down-regulating capbg and mb genes in hair cell activity as a whole

What are the mechanisms of these genes in hearing loss?

How does each cell type individually affect hearing loss?

Summary

scRNA sequencing provides insight into the different hair cell types of zebrafish

How can we use this scRNA-seq data?

Gene orthologs associated with hearing functions identified

Correlation between down-regulation of Capgb and Mb genes and hearing function

References

[1] Single-cell RNA sequencing technologies and bioinformatics pipelines. Hwang B, Lee JH, Bang D. Exp Mol Med. 2018 Aug 7;50(8):96. doi: 10.1038/s12276-018-0071-8. Review.PMID: 30089861

[2] https://www.10xgenomics.com/blog/single-cell-rna-seq-an-introductory-overview-and-tools-forgetting-started

[3] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009 Jan;10(1):57-63. doi: 10.1038/nrg2484. PMID: 19015660.

[4] Qian F, et al. Single-cell RNA-sequencing of zebrafish hair cells reveals novel genes potentially involved in hearing loss. Cell Mol Life Sci. 2022 Jun 26;79(7):385. doi: 10.1007/s00018-022-04410-2.PMID: 35753015

Image References

- Biorender
- https://link.springer.com/chapter/10.1007/978-981-16-1197-1_16
- <u>https://lcsciences.com/services/rna-sequencing-services/single-cell-rna-seq-sequencing-service/</u>
- Steinheuer, Lisa & Canzler, Sebastian & Hackermüller, Jörg. (2021). Benchmarking scRNA-seq imputation tools with respect to network inference highlights deficits in performance at high levels of sparsity. 10.1101/2021.04.02.438193.
- <u>https://www.frontiersin.org/articles/10.3389/fmed.2021.822804/full</u>
- <u>https://www.nature.com/articles/s41596-018-0073-y/figures/1</u>
- https://vikramas.com/cell/
- <u>https://www.genetex.com/Research/Overview/neuroscience/Ion-Channels</u>
- <u>https://www.geeksforgeeks.org/cell-division/</u>
- <u>https://www.cdc.gov/nceh/hearing_loss/how_does_loud_noise_cause_hearing_loss.html</u>