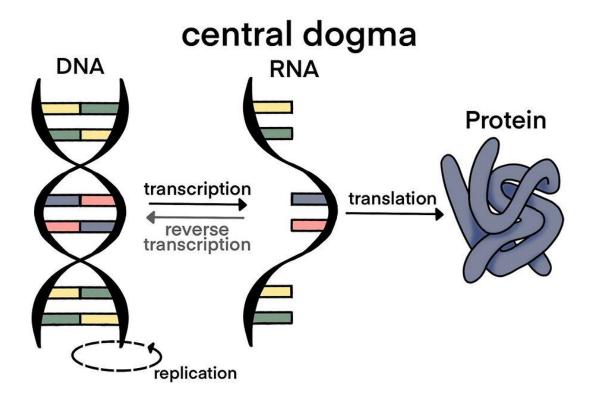
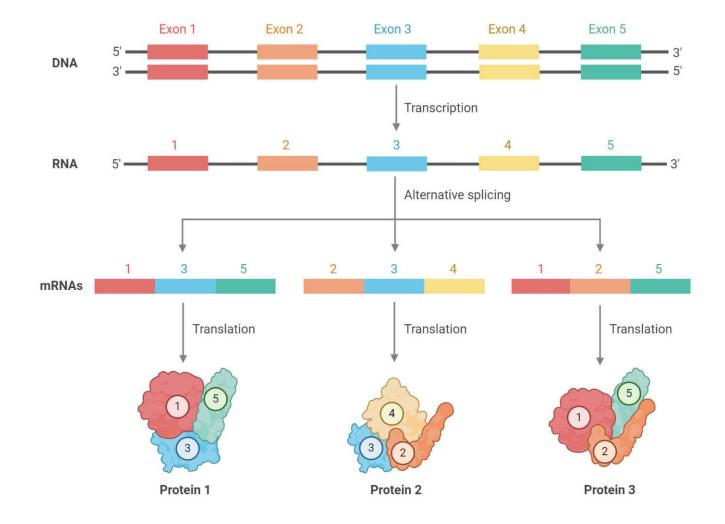
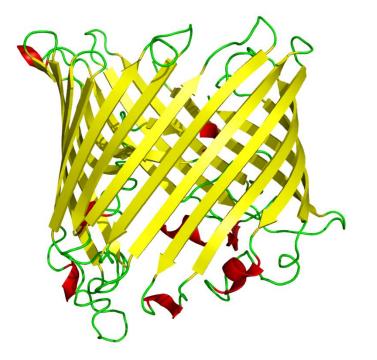

Motif and Domain Discovery


Rohan Babaria and Joely Swanson

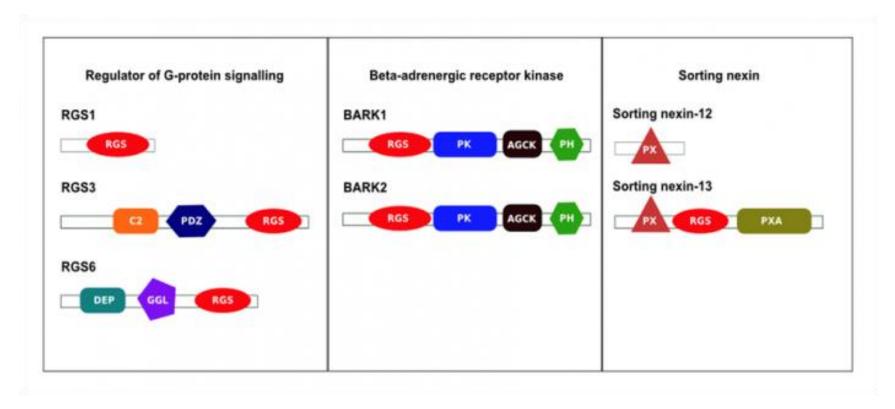
What are Proteins?


Proteins are polypeptides, chains of amino acids, that act as the functional unit of life.

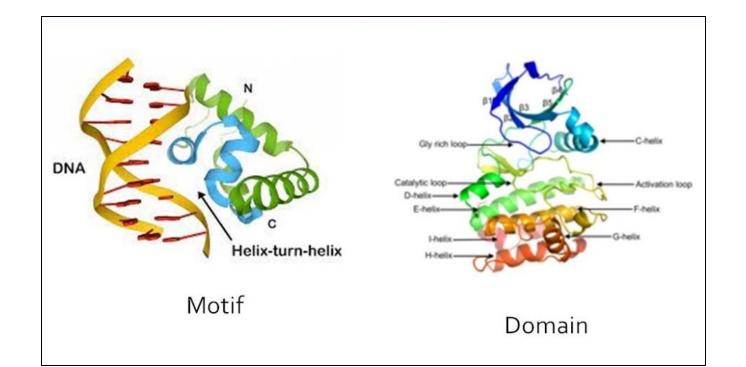
How are proteins made?


Proteins are translated from mRNA transcripts derived from DNA.

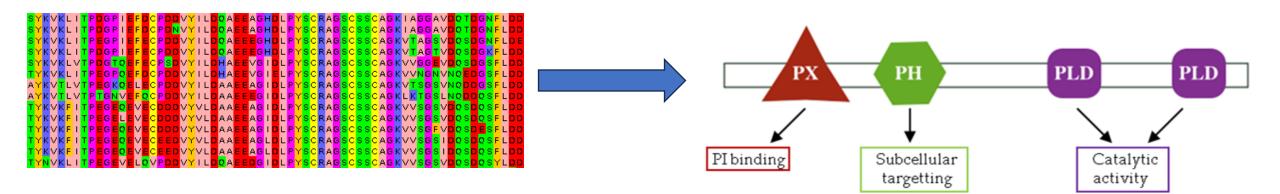
How are multiple protein variants produced?


What are the 4 structure types?

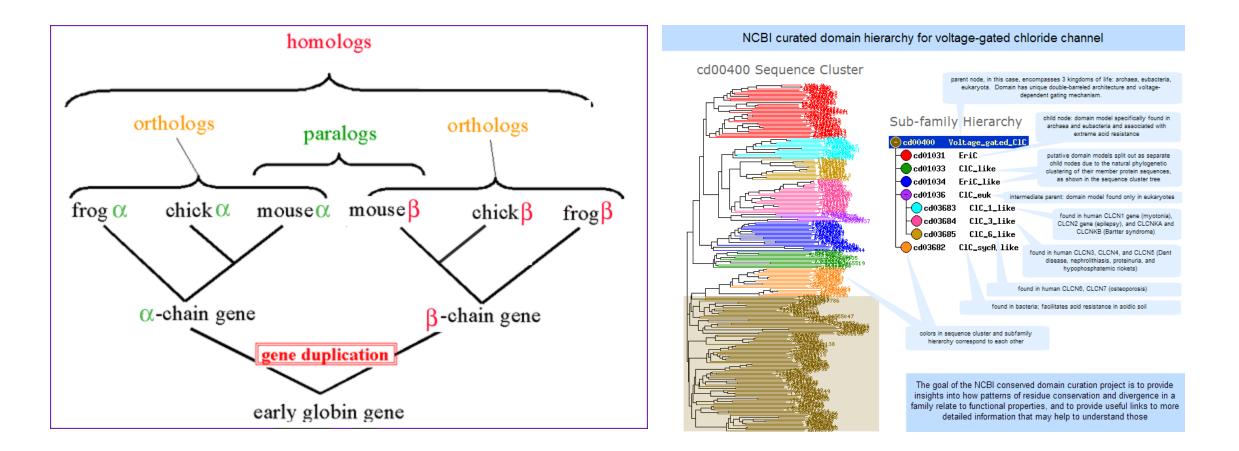
What are Protein Motifs?


Small region of protein with a common three-dimensional structure/sequence shared among proteins.

What are Protein Domains?


A conserved sequence pattern that acts as an independent functional and structural unit.

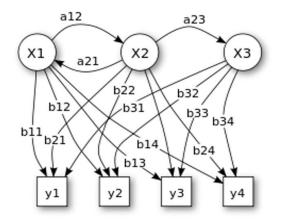
What are the differences?


MOTIF VERSUS DOMAIN IN PROTEI RUCTURE MOTIF DOMAIN A chain-like biological An independent folding unit of the three-dimensional structure made up of connectivity between protein structure secondary structural elements A supersecondary structure A tertiary structure of the of a protein protein Formed by the connected Formed by the formation, alpha-helices and beta-sheets of disulfide bridges, ionic through loops bonds, and hydrogen bonds between amino acid side chains Mainly have a structural Mainly have functional function in the protein importance structure Have similar Have unique functions functions through protein families Are not stable independently Are independently stable Visit www.PEDIAA.com

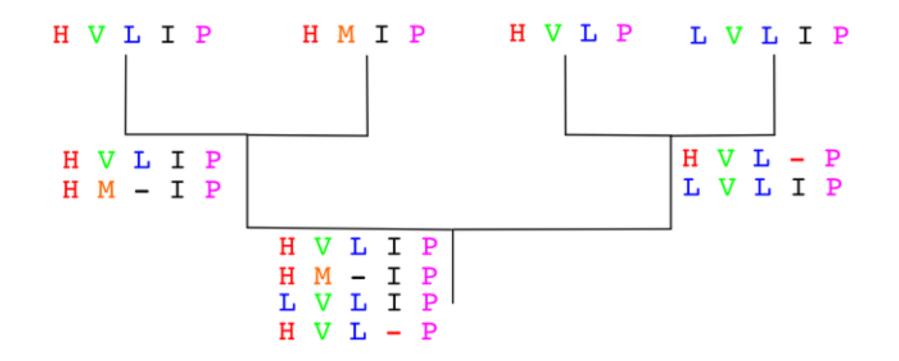
Why do we care?

Conserved domain sequences give us insights into protein function and history.

How do we characterize proteins through homology?

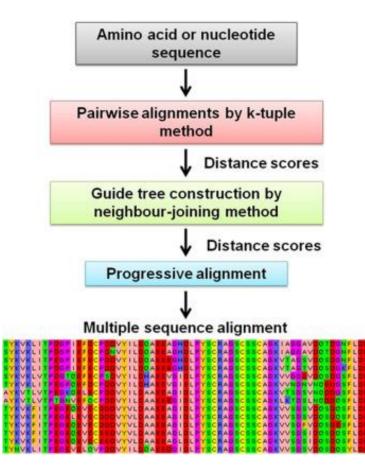


How can we identify conserved domains?


Multiple Sequence Alignment Theory and Practice - Step-by-Step

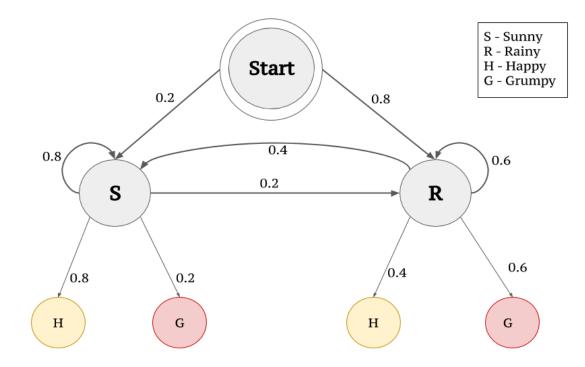
* 1	t	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	* 1	t 7	t 7	,	* *	*	*	*	×	* :	+ +	t	*	*	*	*	*	*	*		*	*	1	*	*	,	* *	*	*	*	*	* *	* :	*
GZ	A	r	Т	A	Т	г	С	г	G	A	т	т	т	т	т	т	A	A	A	т	T	r <mark>z</mark>	7	3 Z	١Z	I	T	т	G	A	T	C (1	T	A	Т	A	г	AG	1	A	С	С	Т	A	C	CZ	١A	Т	G	A	A	T :	г	AZ
GZ	A	r	Т	A	Т	Т	С	г	G	A	Т	Т	т	Т	Т	Т	A	A	A	Т	T I	ΓZ	70	G Z	١Z	V I	T	Т	G	A	T		CA	Ι	A	Т	A	г	AG	; I	A	С	С	Т	A	С	CZ	١A	Т	G	A	A	T I	Γ	٩A
GZ	A 7	A	Т	A	Т	Т	С	г	G	A	т	т	т	т	т	Т	A	A	A	т	T I	ΓZ	70	G Z	١Z	V I	Т	т	G	A	T :		CA	Ι	A	T.	A	г	ΑZ	I I	Τ	С	С	Т	A	C	ΑZ	١A	Т	G	A	A	T I	Γ	A
GZ	47	A	Т	A	Т	Т	С	г	G	A	т	т	т	Т	т	Т	A	A	A	Т	T	ΓZ	70	3 Z	١Z	V I	T	Т	G	A	T	C (CA	Ι	A	T.	A	г	AZ	V I	Τ	С	С	Т	A	C	ΑZ	١A	Т	G	A	A	T I	Γ	٩Z
GZ	47	A	Т	A	Т	Т	С	r	G	A	Т	Т	Т	Т	Т	Т	A	A	A	Т	T	ΓZ	70	G Z	١Z	V I	T	Т	G	A	T	C (CA	Ί	A	T	A	г	AZ	V I	Т	С	С	Т	A	C	AZ	١A	Т	G	A	A	T I	Γ	AG
GZ	47	A	Т	A	Т	Т	С	г	G.	A	т	т	т	т	т	Т	A	A	A	Т	С	ΓZ	7	G Z	١Z	V I	T	Т	G	A	T :		CA	Ι	A	T.	A	г	AZ	V I	Ί	С	С	A	A	C	ΑZ	١A	Т	G	A	A	T :	Γ	AG
GZ	47	A	Т	A	Т	Т	С	г	G.	A	Т	т	Т	Т	т	Т	A	A	A	Т	С	ΓZ	70	3 Z	١Z	V I	T	Т	G	A	T		CA	Ι	A	T	A	г	AZ	V I	Τ	С	С	A	A	C	AZ	١A	Т	G	A	A	T I	Γ	AC
GZ	47	A	Т	A	Т	Т	С	г	G	A	Т	т	т	Т	Т	Т	A	A	A	Т	С	ΓZ	7	3 Z	١Z	V I	T	Т	G	A	T		CA	Ι	A	Т	A	г	AZ	1	Т	С	С	A	A	C	AZ	١A	Т	G	A	A	T I	Γ	A
GZ	47	A	Т	A	Т	Т	С	г	G.	A	т	т	т	т	т	Т	A	A	A	Т	T I	ΓZ	7	G Z	١Z	V I	Т	т	G	A	T :		CA	Ι	A	T.	A	г	ΑZ	V I	Ί	С	С	Т	A	C	ΓZ	١A	Т	G	A	A	T :	Γ	AC
GZ	47	A	Т	A	Т	Т	С	г	G.	A	Т	Т	Т	Т	Т	Т	A	A	A	Т	T	r Z	70	G Z	١Z	L	Τ	Т	G	A	T	C 0	CA	I	A	Т	A	г	AI	1	Τ	С	С	Т	A	C	ΓZ	١A	Т	G	A	A	T I	Г	AG
GZ	47	A	Т	A	Т	Т	С	Г	G	A	Т	Т	Т	Т	Т	Т	A	A	A	Т	T I	ΓZ	7	G Z	١Z	1	Т	Т	G	A	T		CA	I	A	T	A	Г	AZ	I	Τ	С	С	Т	A	C	r Z	١A	Т	G	A	A	T :	Г	AÇ

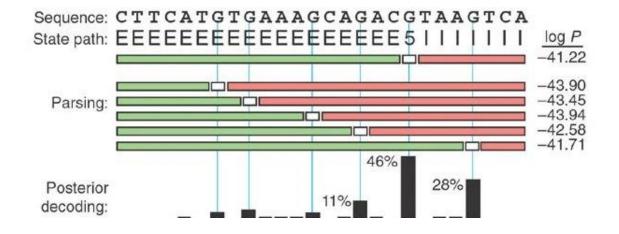
Hidden Markov Model



What is MUSCLE?

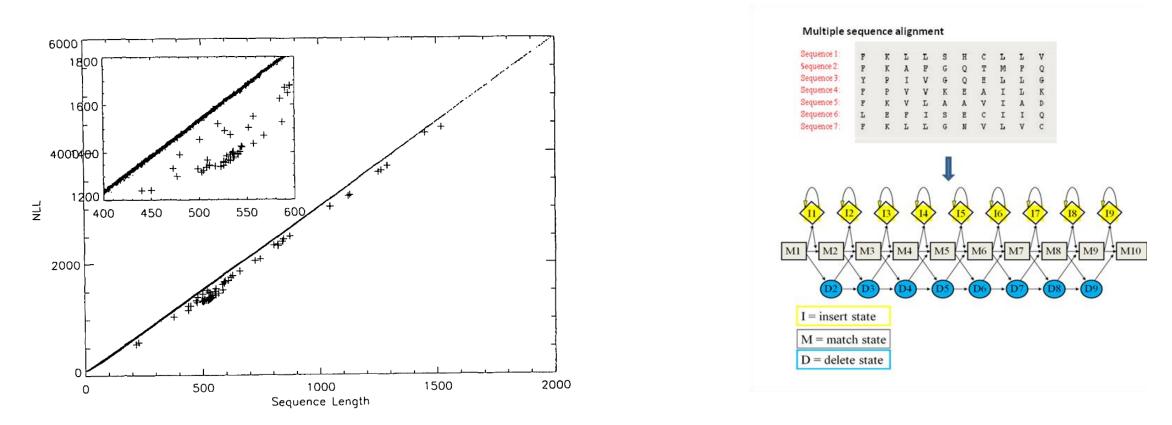
Multiple Sequence Alignment using Multiple Sequence Comparison Log-Expectation


How does MUSCLE work?



- _____
- _____

What is HMM and how is it used?



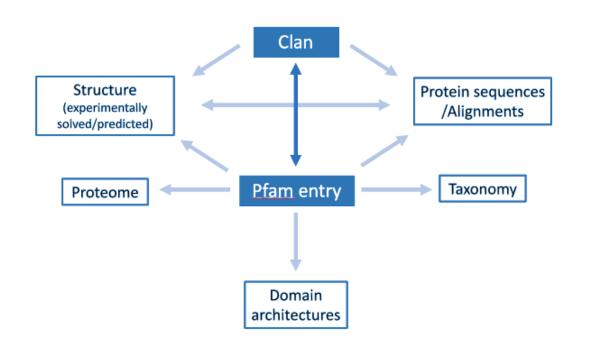
 $\begin{bmatrix} A = 0.25 \\ C = 0.25 \\ G = 0.25 \\ T = 0.25 \end{bmatrix} \begin{bmatrix} A = 0.05 \\ C = 0 \\ G = 0.95 \\ T = 0 \end{bmatrix} \begin{bmatrix} A = 0.4 \\ C = 0.1 \\ G = 0.1 \\ T = 0.4 \end{bmatrix}$

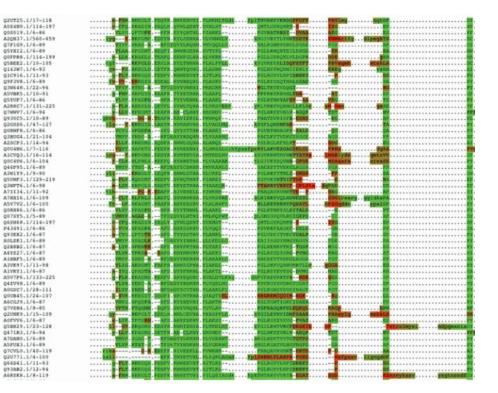
Hidden Markov Model

How is HMM utilized?

Searching through sequences and identifying protein families and generating profiles from MUSCLE.

What are Family Based Resource Groups?

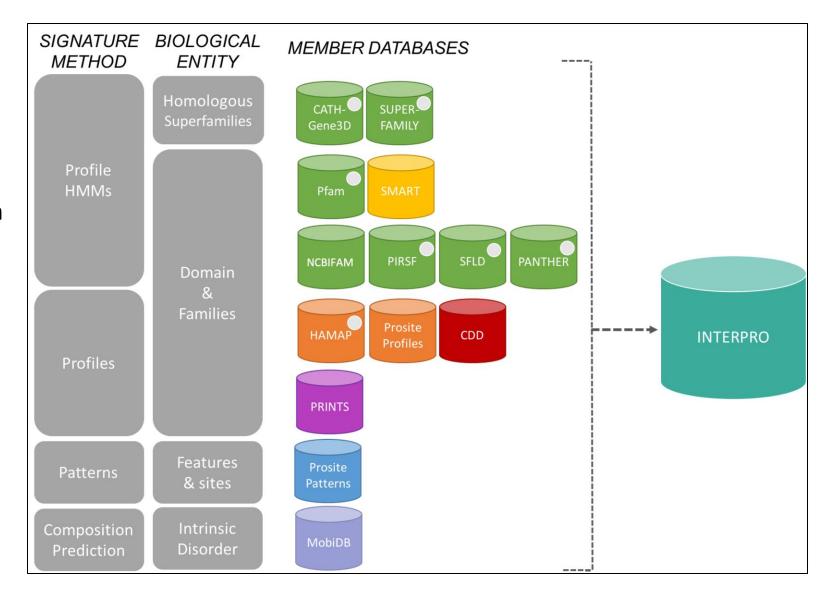

Techniques that group together protein sequences or protein domains into evolutionary families.


Some utilize techniques like sequence clustering, while others use significant manual curation.

Ex. PFAM, ProDom, PANTHER, SMART, PhyloFacts

	Netscape: ProDom 34.1 Result (D=1856)
SWISS-PROT: Q01580	D
ID HDGF_FIG STANDARD; PRT; 84 AA. AC 001580;	Domain 1856 (Prodom Release 34.1)
pt 01-FEB-1995 (FEL. 33, CREATED)	To view a graphic representation of all proteins containing this domain click here - RasMol Version 2
DT 01-FEB-1996 (FEL. 33, LAST SEQUENCE UPDATE) DT 01-FEB-1996 (FEL. 33, LAST ANDIOTATION UPDATE)	Go to 3D Structures File Display Co
DE MEPARIN-BINDING EGF-LIKE GROWTH FACTOR (HE-EGF) (FRA GN MEGFL.	
05 SUS SCROFA (PIG). 00 EURARYOTA, METAZOA, CHORDATA; VERTEBRATA; TETRAPODA;	Domain ID: 1955/ (Probom34 1) Humber of sequences in family: 17
OC EUTHERIA; ARTIODACTVLA. FN [1]	Host frequent protein names: TOFR(7) HDOF(5) BTC(2) Commentary (automatic): PRECURSOR GROWTH TOF FACTOR ECF-LEY
	wt
r-0	HEAF PIG 10 47 0.59 CLRKYXDFCINGECKYVXELRAPSCICHPGYNGERCHG HEAF CERAE 108 145 0.59 CLRKYXDFCINGECKYVXELRAPSCICHPGYNGERCHG
	HEEF HEMAN 108 145 0.59 CLEMYNDFOIMOECNYVKELAADSCICHDOWHOERCHG
PROSITE: PS00022	HORF FAT 108 145 1.48 CLEKYHDYCTHGECRYLHELRIPSCHCLPGYHGGRCHG
FROSITE: F 500022	AMPR HARMAN 145 183 2.00 CHAEFONFCIHOECKYIEHLEAVICKCOQEVFGERCGE
ID EGF 1: PATTERN.	SDOF PAT 137 174 1.34 CAAKFONFCINGECRYIENLEVVICNCHODYFGERCGE
IB EGF 1; PATTERN. nc ps05022; DT AFR-1990 (CREATED); AFR-1990 (DATA UPDATE); FEB-1993	TOFA DAELT 8 45 0.34 CDDSHTOFCFHOTCHFLVGEDKDACVCHSCYVCARCEN
DE EGF-like domain signature 1.	TOFA PIG 47 84 0.55 CPDSH50FCFHGTCRFLV0EDKPACWCHS6YVGARCEN
PA C-x-C-x(5)-G-x(2)-C. HR /FELEASE=32,49340;	TOFA SMEEP 46 83 0.83 CPDSHTOFCFHOTCRFLLQEEKPACWCHSGYWGARCEM
<pre>NR /TOTAL=626(193); /POSITIVE=530(125); /UNEROWH=41(21) NR /FALSE_NE0=0; /PARTIAL=0;</pre>	TOPA PAT 46 83 0.62 CPDSHTQYCPHGTCRPLYQEEKPACYCHSGYYGVRCEN
CC /TAXO-DANCE=??E?V: /MAX-REPEAT=36:	ETC HUNAN 59 105 1.93 CPROVINVCIKORCRFVVAEOTPSCVCDEGVIGARCER 59 105 1.93 CPROVINVCINORCRFVVDEOTPSCICENSVFOARCER
CC /SITE=1 disulfide; /SITE=3, disulfide; /SITE=7, disulfide; DR p10079, ECFN_STRPU, T; p33450, FRT_DROME, T; P08077	consensus CPREYENVCINGECRYIEEEETPSCOCHOCYFGERCEN
DR <u>p08441</u> , GRFA_SFVKA, T; <u>p20434</u> , GRFA_VACGC, T; <u>p0113</u> ; DR <u>p33804</u> , GRFA_VARV , T; <u>p01133</u> , EGP_HUMAH , T; <u>p0113</u> ;	@ PROSITE
nn 101522 Par Day T T 101115 Taxa 10mau T 00032	PRUSITE
Netscape: MultAlin: Domain 1856	Consensus position PROSITE Pattern PROSITE Entry Documentation
	25-36 EGF PDOC00021
1 10 20	
HBGF_PIG 10 47 CLRKYKDECIHGECKYVKELRAPSCI	Sample 3D Structures
HBGF_CERRE 108 145 CLRKYKDFCIHGECKYVKELRAPSCI	
HOGF_HUHAN 108 145 CLRKYKDFCINGECKYVKELRAPSCI	SwissProt ID oposition PDB Short position Entrez Scop Rasmol
HBGF_HOUSE 108 145 CLRKYKDYCIHGECRYLQEFRIPSCK HBGF_RAI 108 145 CLKKYKDYCIHGECRYLKELRIPSCH	
AMPR_HUMAN 146 183 CNAEFONFCINGECKYLENLEAVICK	TGFA RABIT 8-45 1yet 8-45 Entrez Scop Rasmol
SDGF_HOUSE 139 176 CTRKEQNECINGECRYTENLEVVIEN	
SDGF_RAT 137 174 CAAKFONFCINGECRYIENLEVVICH TGFA_HACHU 24 61 CPDSHTOFCFNGTCRFLVQEDRPACY	TGFA HUMAN 47-84 1yer 8-45 Entres Scop Rasmol
TGEA_HACHU 24 61 CPDSHTOECEHGTCRELVQEDRPACY TGEA_RABIT 8 45 CPDSHTOECEHGTCRELVQEDRPACY	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
TGEN_HUMAN 47 84 CPDSHTOFTENGTCRELVOEDKPACV	
TGEN_PIG 47 84 CPDSHSOFCEHGTCRELVQEDKPACV	Result in GIF format
TGFR_SHEEP 46 83 CPDSHTQFCFHGTCRFLLQEEKPBCV TGFR_HOUSE 46 83 CPDSHTQYCFHGTCRFLVQEEKPACV	
TGEN_RAT 46 83 CPDSHT0YCFHGTCRFLV0E	useful for multiple alignment analysis
BIC_HUMAN 69 106 CPK0YKHYCIKGRCRFYVAE01PSCV	
BIC_HOUSE 69 106 CPK0YKHYCIHGRCRFVVUE01PSCI Consensus C yk fCibGeCry psC	Alignment in MSF format
concercas e de remocerdi per	

What is **Pfgm**


PFAM is a database that allows you to analyze proteins and find families using HMM to detect homology.

What can you do with PFAM?

What can you do with PFAM continued?

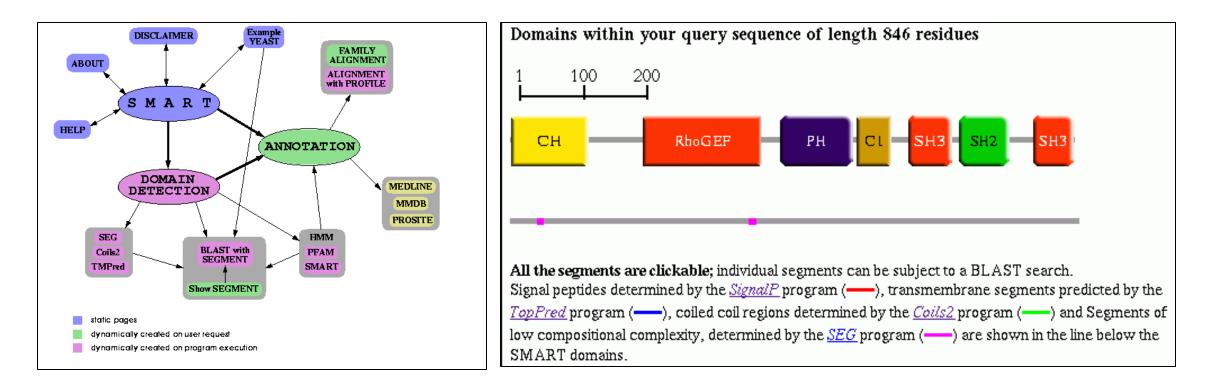
What is InterPro?

Interpro is a large secondary protein database that incorporates many different databases

How to use Interpro?

by text

by sequence


by domain architecture

This form all		natches against the InterPro protein s		ProScan tool. Enter or paste a prot	ein sequence in FASTA form
Please note	that can scan up 100 sequences at a	time. Alternatively, read more about	InterProScan for other ways of r	unning sequences through InterP	roScan.
Enter your	sequence				
Choose fil	e Example protein sequence				
►Advance	d options				
	Clear				
	Clear				Doword by InterDec
					Powered by InterProS

Search by sequence or Ascension -> Interpro entry

	Short name Malate_DH_	_type2	Add your annotation
Overview Proteins 24k Taxonomy 25k	Overlapping homologous superfamilies •	dehydrogenase/glycoside hydrolase, family 4, C-termina	l (IPR015955) Contributing Member Database Entries
Proteomes 4k Structures 35 AlphaFold 18k Pathways 166	T Ma	tate/malate dehydrogenase (IPR001557) Iate dehydrogenase, type 2 (IPR010945) Lactate dehydrogenase, protist (IPR011272) Malate dehydrogenase, NADP-dependent, plants (IPR0112	
	Description Malate dehydrogenases catalyse the inte	do opfactore	
	[1]. The enzymes in this entry are found in first group are cytoplasmic, NAD-depend second group are found in plant chloropla	nct groups. The PANTHER: 1.1.37 @). The PTHR23382	
	oxo/hydroxyacid substrates the enzyme r	n the correct substrates (malate and oxaloacetate) and o may encounter within the cell ^[6] .	and potontial
	Biological Process	Molecular Function	Cellular Component
	 malate metabolic process (GO:0006108) ₽ 	None	
	References Malate dehydrogenase: a model for structure, ew and catalysis. Goward CR, Nicholls DJ. Protein Sci. 3 1883-8, (1944). View article CP URID: 78450302 Determinants of protein thermostability observed: 1.9-A crystal structure of malate dehydrogenase for thermosphilic bacterium Thermus Taxus. Kelly CA, N, M, Ohnishi Y, Beppu T, Birktoft JJ. Biochemistry 32, 3913-22, (1993). View article CP MID: 8471603 (2)	3. biochemical properties, and crystal structure of malate dehydrogenase from a syschrophile Aquaspirillium din the victicum. Kim SY, Hwang WY, Kim SH, Sung HC, Han YS, Y. J. Biol. Chem. 274, 11761-77, (1999). Warticle 2 PMDI: 10206992. 2 Isihiyama 4. Structural basis for light activation of a chloroplast	10196131 (2 6. Structural basis of substrate specificity in mala dehydrogenases: crystal structure of a ternary co porcine cytoplasmic malate dehydrogenase, alph ketomalonate and tertahydoNAD. Chapman AD, C dis- Dafform TR, Clarke AR, Brady RL J. Mol. Biol. 285
	Cross References		
	EC 🛛	GP GenProp1584	

How can SMART be used?

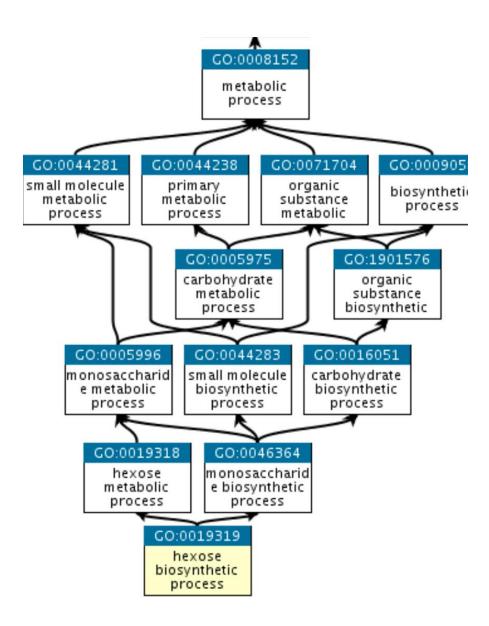
SMART is a database that is used in the analysis of protein domains within protein sequences.

Also uses Hidden Markov models to best sort through the database.

SMART vs PFAM- when to use what?

SMART

- Specializes in extracellular, signaling, and chromatin associated domains
- Significant manual curation (>1200 manually curated models)
- Exclusive annotation

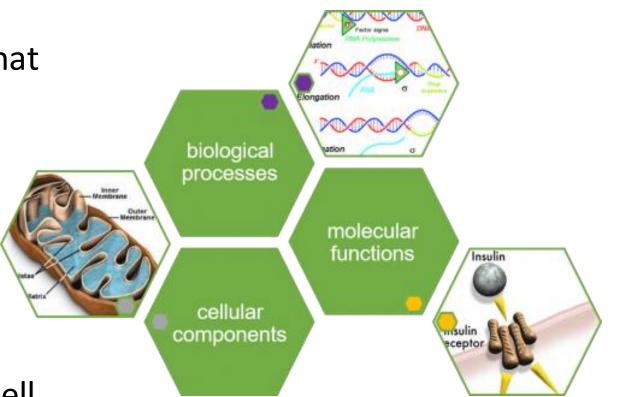

PFAM

- Many more proteins in the database
- Novel sequences are classified into families
- No longer exists (incorporated into InterPro)

What is Gene Ontology?

Ontology: A set of well-defined terms with well-defined relationships

Gene ontology is a way of categorizing and organizing data to facilitate data retrieval.



Categories of Gene ontology

Biological process: the objective that the gene/protein contributes to.

Molecular function: The role/biochemical activity of a gene product.

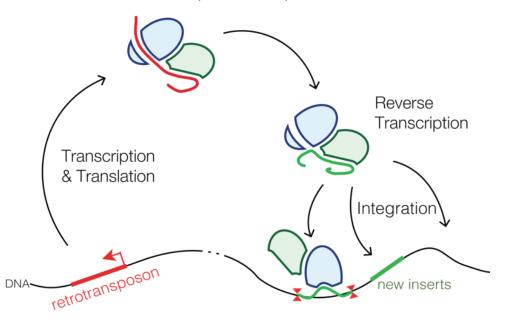
Cellular component: Place in the cell where a gene/protein is active.

Summary

- 1) Domains are conserved, functional units of protein
- 2) Domains can be uncovered and analyzed by various homology and non-homology directed methods.
- 3) Domain analysis allows us to infer protein function and better classify protein families.

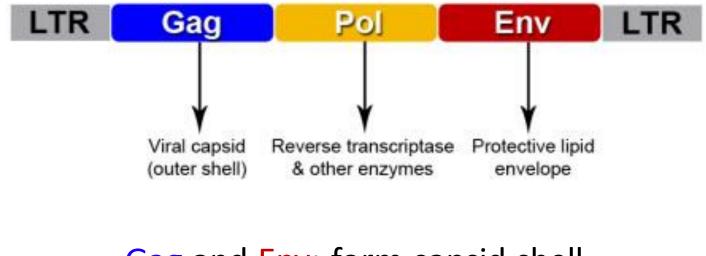
Dr. Jason Shepherd & the Arc protein

Molecular function of Arc protein in long-term memory formation

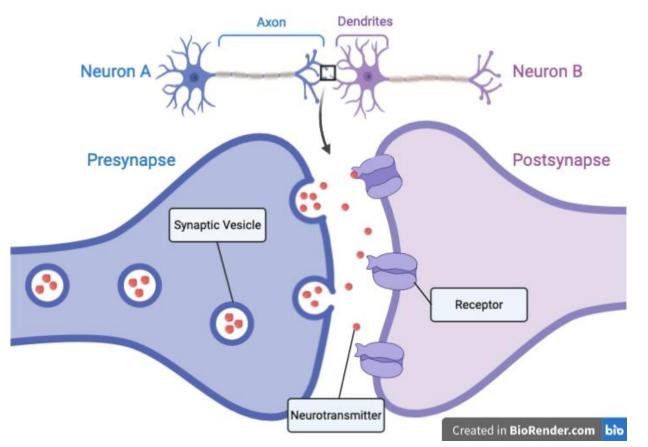

Questions?

Pastuzyn et al., 2018

How is information stored in the brain?


Formation of Ribonucleoprotein complexes

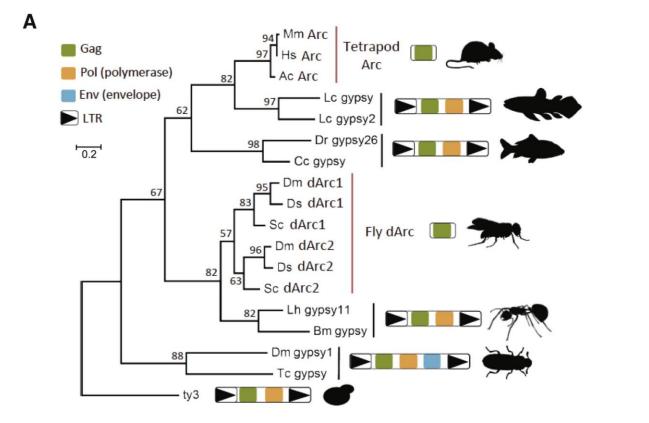
Retrotransposons store long-lasting information along with genetic memory.


What is a retrovirus?

Retroviral Genome Structure

Gag and Env: form capsid shell Pol: encodes enzymes

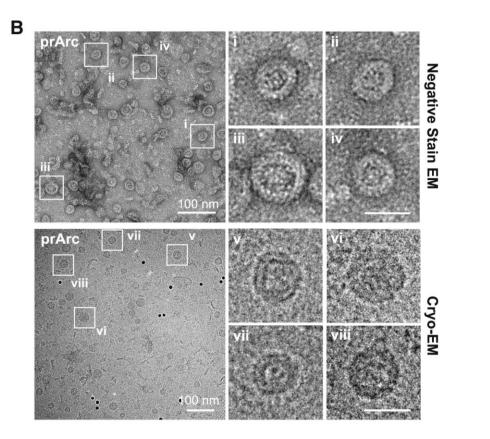
What is a synapse?


A synapse is the gap between neurons that allow movement of information in the brain.

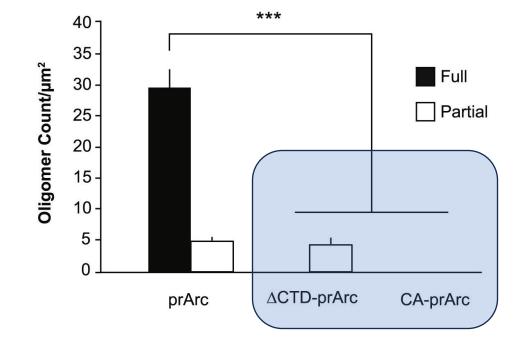
What is Arc? MA = Matrix CA-NTD = Capsid N-terminal domain Predicted MA CA-NTD CA-CTD CA-CTD = Capsid C-terminal domain

Created in BioRender.com bio

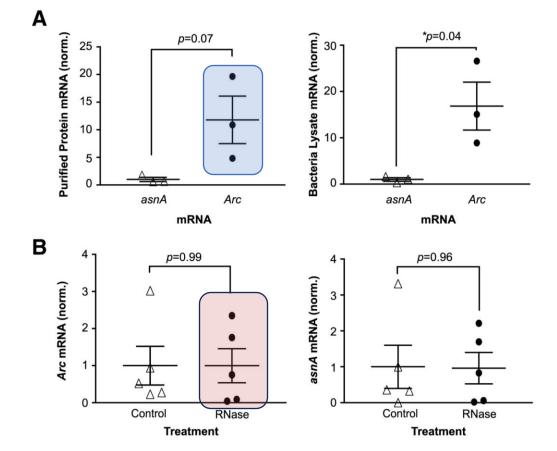
Arc is a neuronal gene that is important for memory and synaptic plasticity regulation.


What are the evolutionary origins of Arc?

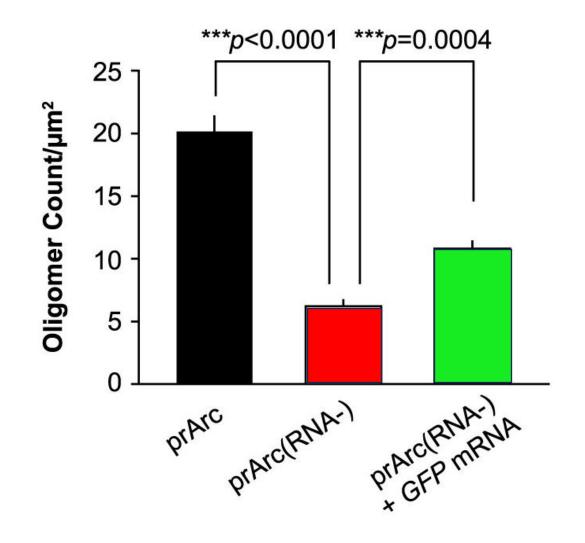
Retroviral Gag domain


Ty3/gypsy transposons

Does the Arc protein form capsids?

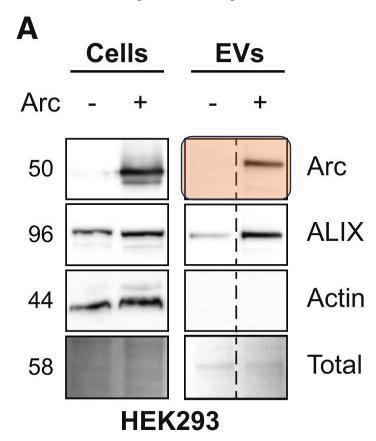

Arc proteins self-assemble into virus-like capsids.

Is CTD required for capsid formation?

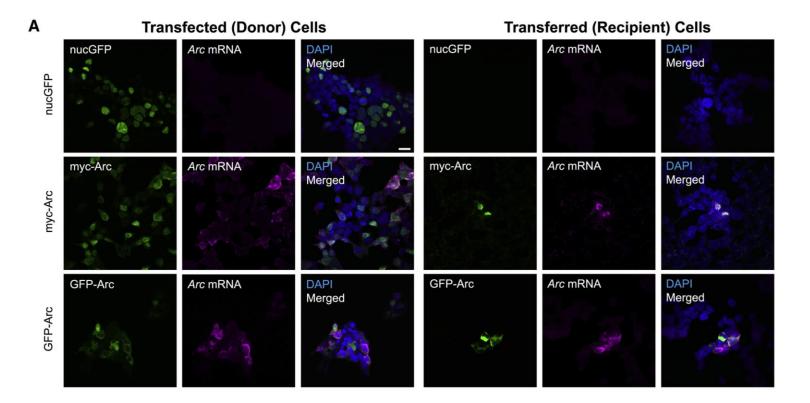

Capsids are not formed without CTD.

Does Arc bind and encapsulate mRNA?

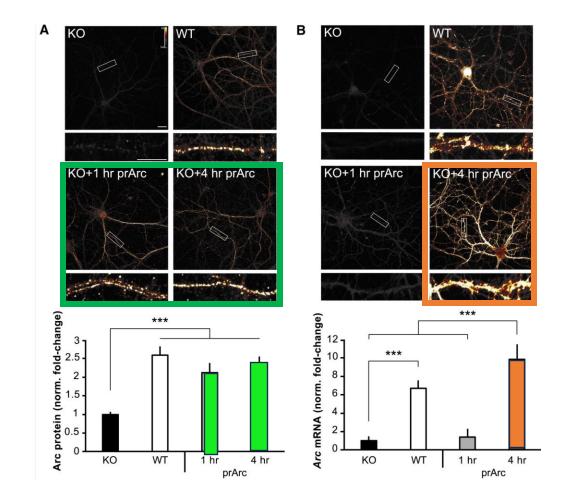
Arc binds and encapsulates mRNA, protecting it from degradation.


Is RNA required for proper capsid assembly?

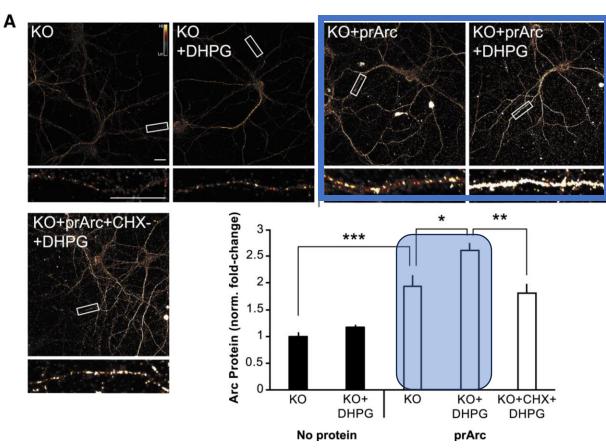
Removing RNA bases decreased proper capsid formation.

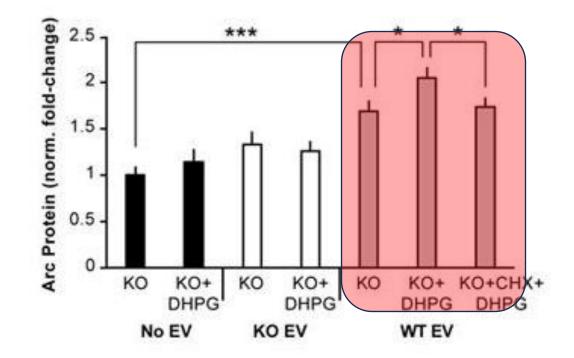

Addition of mRNA increased proper capsid formation.

Is Arc mRNA found in extracellular vesicles (EVs)?

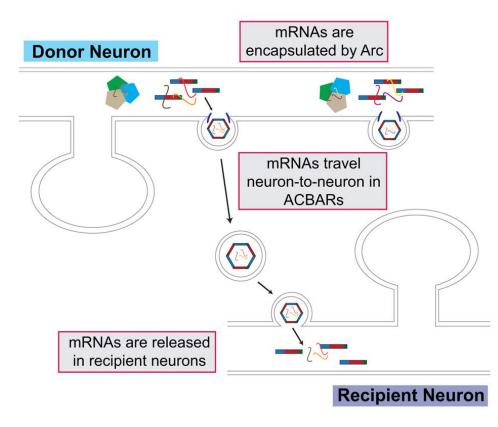


Arc mRNA is found in EVs.

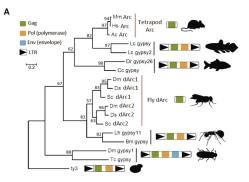

Can Arc transfer mRNA with capsids or EVs?


Are capsids required for neuronal uptake?

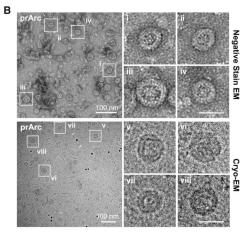
Is mRNA transferred by Arc available for translation?

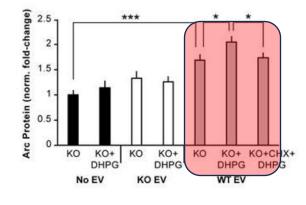


Is mRNA transferred by Arc available for translation?


Translation is occurring after being transferred to neurons.

How does Arc work in the brain?


Like a retrovirus!


Summary

Arc shares properties of the retroviral Gag protein

Arc can form stable virus-like capsids

These capsid structures allow for mRNA transfer from neuron to neuron.

Questions?

Citations

- Xiong J. Protein Motifs and Domain Prediction. In: *Essential Bioinformatics*. Cambridge University Press; 2006:85-94.
- Eddy, S. What is a hidden Markov model?. *Nat Biotechnol* **22**, 1315–1316 (2004). <u>https://doi.org/10.1038/nbt1004-1315</u>
- Finn, R.D., Mistry, J., Tate, J.G., Coggill, P.C., Heger, A., Pollington, J.E., Gavin, O.L., Gunasekaran, P., Ceric, G., Forslund, K., Holm, L., Sonnhammer, E.L., Eddy, S.R., & Bateman, A. (2007). The Pfam protein families database. Nucleic Acids Research, 38, D211 - D222.
- Punta, Marco et al. "The Pfam protein families database." Nucleic Acids Research 40 (2011): D290 D301.
- UniProt Consortium. The universal protein resource (UniProt). *Nucleic Acids Res*. 2008;36(Database issue):D190-D195.doi:10.1093/nar/gkm895
- Blum M, Chang HY, Chuguransky S, et al. The InterPro protein families and domains database: 20 years on. *Nucleic Acids Res*. 2021;49(D1):D344-D354. doi:10.1093/nar/gkaa977
- Pastuzyn ED, et al., The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell. 2018 Jan 11;172(1-2):275-288.e18. doi: 10.1016/j.cell.2017.12.024.

Image links

- https://static.wixstatic.com/media/309e2a_1fccf0f30277416b8ed317c7548b3401~mv2.png/v1/fill/w_1000,h_667,al_c,q_90,usm_0.66_1.00_0.01/309e2a_1fccf0f30277416b8ed317c7548b3401~mv2.png
- https://microbenotes.com/wp-content/uploads/2020/10/Alternative-Splicing.jpeg
- https://www.ebi.ac.uk/training/online/courses/protein-classification-intro-ebi-resources/wp-content/uploads/sites/96/2020/07/figure7.png
- <u>https://www.ncbi.nlm.nih.gov/Structure/cdd/docs/images/cd00400_hierarchy_tree.png</u>
- <u>https://i.ytimg.com/vi/60Mo9M-nnuk/maxresdefault.jpg</u>
- <u>https://i0.wp.com/pediaa.com/wp-content/uploads/2019/06/Difference-Between-Motif-and-Domain-in-Protein-Structure-Comparison-Summary.jpg?resize=475%2C600&ssl=1</u>
- https://www.ebi.ac.uk/training/online/courses/interpro-functional-and-structural-analysis/wp-content/uploads/sites/32/h5p/content/5/images/image-65b9130f47105.png
- <u>https://www.sciencedirect.com/science/article/pii/S0092867417315040</u>
- <u>https://clarkesworldmagazine.com/koboldt_02_16/</u>
- <u>https://en.wikipedia.org/wiki/Retrotransposon</u>