Chemical Screening

Xinyi Chen and Dianna Xie

What is the drug discovery process?

What is a small molecule drug?

Small molecules are organic compounds with low molecular weight(< 1 KDa)

What is chemical screening?

Chemical screening refers to the process of testing a series of chemical compounds to identify those that have the desired biological activity

What is **High-throughput Screening**?

HTS is a high-tech way to accelerate the drug discovery process, allowing quick and efficient screening of large compound libraries at a rate of a few thousand compounds per day or per week.

Two pathways of chemical screening

How do you prepare samples for forward chemical screening?

Dang et al., 2016 Fábián et al., 2022

How do you prepare samples for forward chemical screening?

Dang et al., 2016 Fábián et al., 2022

What are the steps of forward chemical screening?

Dang et al., 2016

What is **High-Content Analysis**?

HCA combines *automated imaging* and *quantitative data* analysis in a highthroughput format to produces a large number of *individual* cell measurements.

What are the advantages of HCA?

Multiparametric records facilitate reanalysis

Multicellular structures from 3D spheroids, Organoids

What are Softwares for High-Content Analysis?

Cell counts, sizes, morphologies

Classification of cell images

Digital pathology

S Core Life Analytics

No advanced knowledge data analysis techniques required

What are the steps of reverse chemical screening?

How to select chemical library?

Dang et al., 2016

How do researchers identify hit?

Mean \pm K std (K > 3)

Control Group

AVG	12.17
SD	2.04

 $12.17 \pm 3 * 2.04 = 12.17 \pm 6.12$

How to distinguish between positive hit and false positive?

Orthogonal assay

Using a different reporter or assay format

Thorne et al., 2010

How to select hit for optimization?

High Selectivity

Dose response curve

Structure-Activity Relationship

Positive hits are optimized by changing chemical structures

Number of compounds for each stage

Summary

HTS is an effective way to accelerate the drug discovery process and small molecule drugs are popular candidates on the discovery processes

Chemical screening contains two pathway, either pathways and assays chosen for discovery are based on special purposes

HTS method has low hit rate, but compared with traditional screening, it's more efficient especially for large scale screening

QUESTIONS?

About the Author

Dr. Chetana Sachidanandan The Sachidanandan lab aims to investigate neurodevelopmental disorders based on zebrafish: Mendelian disorders, Complex disorders THE ZEBRAFISH CHEMICAL GENETICS LAB

The Sachidanandan Lab

Contents lists available at ScienceDirect

European Journal of Medical Genetics

journal homepage: www.elsevier.com/locate/ejmg

Chemical screens in a zebrafish model of CHARGE syndrome identifies small molecules that ameliorate disease-like phenotypes in embryo

Zainab Asad^{a,b,1}, Chetana Sachidanandan^{a,b,*}

^a CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, 110025, India ^b Academy of Scientific and Innovative Research (AcSIR), New Delhi, India

What are the symptoms of **CHARGE** syndrome?

Coloboma Of eye

Heart defects

Atresia of choanae

Retardation of growth

Genital hypoplasia a

Ear anomalies

CHD7 is associated with CHARGE syndrome

CHD7 - Chromodomain helicase DNA binding protein 7, found in body parts such as eye, ear, and brain during embryonic stage

Which chemical compounds were known to target CHD7?

Which chemical compounds were known to target CHD7?

Why use **zebrafish** as the model organism?

Similar diseaseassociated gene Transparent embryo Rapid development

Similar drug metabolism pathway

How did they decide the concentration of compounds?

Figs. 1 Survival rate of embryo with different compounds

How does knockdown of CHD7 recapitulate CHARGE syndrome?

The treatment group displayed physical changes compare to the control group

How does knockdown of CHD7 recapitulate CHARGE syndrome?

Tg(NBT:dsred)

mbp

Fig. 1i, k Controlled enteric neurons and glial cells at 4 dpf

Fig. 1j, I Treated enteric neurons and glial cells at 4 dpf CHD7 morphants have severe reduction in enteric neurons and glial cells

How they perform chemical screens on zebrafish embryos?

Embryo collected after fertilization, washed and incubated at 28°C in egg water, arrayed in 12 well plates with 25 embryos per well, observed from 1dpf to 4 dpf

dpf: days post fertilization

Fig 2. Embryo collection & incubation

How they perform chemical screens on zebrafish embryos?

Cartilage lineage: alcian blue staining

Neuronal lineage: fluorescent imaging

Myelination lineage: Schwann cell marker staining

Cartilage

Fig 2. 12 well plates alignment & staining

chd7 MO + Control MO + CHIC-35 DMSO DMSO DAPT Procainamide M344 d 🔻 Alcian Blue 23/32 32/44 25/39 34/48 27/27 18/44 Brightfield m n 0 sox9a 37/46 25/48 33/39 28/37 20/30 30/43 aexos Fig. 3 Jaw structures of control and treatment

In CHD7 morphants, which compounds can recover jaw structures?

The 4 compounds recover jaw structures to different extent, but did not recover the sox9b expression

There is a significant reduction in embryos lacking cartilage staining when treated with the four compounds

Which compounds rescue cranial neurons?

chd7 MO +

Fig. 4 Sensory and motor neurons at 72 hpf

Procainamide and CHIC-35 can partially rescue defects in cranial neurons

Which compounds recover enteric neurons?

Control MO + DMSO

chd7 MO + DMSO

Fig. 4 Enteric neurons at 4dpf

Treatment with Procainamide of CHIC-35 did not induce recovery of enteric neurons

Which compounds rescue myelination?

Different compounds rescue myelination to different degrees

Fig. 5 Rescue of myelination defects at 4dpf

Which compounds rescue myelination?

There is significant reduction in embryo lacking myelination staining

What is the future direction of this study?

Discover a single compound that ameliorates or reverses all the phenotypes

Look into the CHD7 chromatin remodeling activity

Summary

CHD7 mutation disrupts gene expression during embryonic stage

4 compounds, DAPT, M344, CHIC-35, Procainamide, were identified through chemical screening to rescue embryos from disease-like phenotypes

Small molecule compounds may be the key to solve CHARGE syndrome

QUESTIONS?

Article references

Asad, Z., & Sachidanandan, C. (2020). Chemical screens in a zebrafish model of CHARGE syndrome identifies small molecules that ameliorate disease-like phenotypes in embryo. *European journal of medical genetics*, 63(2), 103661.

Dang, M., Fogley, R., & Zon, L. (2016). Cancer and zebrafish: mechanisms, techniques, and models: chemical genetics. *Advances in experimental medicine and biology*, *916*, 103.

Kaufman, C. K., White, R. M., & Zon, L. (2009). Chemical genetic screening in the zebrafish embryo. *Nature protocols*, *4*(10), 1422-1432.

Lieschke, G. J., & Currie, P. D. (2007). Animal models of human disease: zebrafish swim into view. *Nature Reviews Genetics*, *8*(5), 353-367.

MacRae, C. A., & Peterson, R. T. (2015). Zebrafish as tools for drug discovery. *Nature reviews Drug discovery*, 14(10), 721-731.

Markossian, S., Ang, K. K., Wilson, C. G., & Arkin, M. R. (2018). Small-molecule screening for genetic diseases. *Annual review of genomics and human genetics*, *19*, 263-288.

Rea, V., & Van Raay, T. J. (2020). Using zebrafish to model autism spectrum disorder: a comparison of ASD risk genes between zebrafish and their mammalian counterparts. *Frontiers in molecular neuroscience*, *13*, 575575.

Image references

1. Biorender

- 2. Statistics | DrugBank Online. (n.d.). DrugBank. https://go.drugbank.com/stats
- 3. https://www.bioagilytix.com/solutions/phases/discovery-phase-drug-development/
- 4. <u>https://www.perkinelmer.com/analytical-and-enterprise-solutions.html</u>
- 5. Kuijl, C., Tuin, A. W., Overkleeft, H. S., & Neefjes, J. (2008). Reciprocal chemical genetics for swift lead and target identification. *Molecular BioSystems*, 4(10), 1001. <u>https://doi.org/10.1039/b803265n</u>
- 6. <u>https://handling-solutions.eppendorf.com/liquid-handling/pipetting-facts/small-volumes/detailview/news/automated-liquid-handling-systems-facilitate-small-volume-pipetting/</u>
- 7. https://www.arivis.com/applications/high-content-analysis
- 8. Fábián, P., Tseng, K., Thiruppathy, M., Arata, C., Chen, H., Smeeton, J., Nelson, N., & Crump, J. G. (2022). Lifelong single-cell profiling of cranial neural crest diversification in zebrafish. *Nature Communications*, *13*(1). <u>https://doi.org/10.1038/s41467-021-27594-w</u>
- 9. Adams, E., Miyazaki, T., Hayaishi-Satoh, A., Han, M. J., Kusano, M., Khandelia, H., Saito, K., & Shin, R. (2017). A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana. *Scientific Reports*, 7(1). <u>https://doi.org/10.1038/srep43170</u>
- 10. https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cellular-imaging/hcs-hca.html
- 11. https://www.yokogawa.com/us/solutions/products-and-services/life-science/high-content-analysis/analysis-software/cellpathfinder/
- 12. https://en.wikipedia.org/wiki/Pan-assay interference compounds#/media/File:PAINS Figure.tif
- Azad, T., Van Rensburg, H. J. J., Morgan, J., Rezaei, R., Crupi, M. J., Chen, R., Ghahremani, M., Jamalkhah, M., Forbes, N., Ilkow, C. S., & Bell, J. C. (2021). Luciferase-Based biosensors in the era of the COVID-19 pandemic. ACS Nanoscience Au, 1(1), 15–37. https://doi.org/10.1021/acsnanoscienceau.1c00009
- 14. https://www.youtube.com/watch?app=desktop&v=dugbzLuhG3I
- 15. https://en.wikipedia.org/wiki/EC50#/media/File:Dose response antagonist.jpg
- Rauhamäki, S., Postila, P. A., Niinivehmas, S., Kortet, S., Schildt, E., Pasanen, M., Manivannan, E., Ahinko, M., Koskimies, P., Nyberg, N., Huuskonen, P., Multamäki, E., Pasanen, M., Juvonen, R. O., Raunio, H., Huuskonen, J., & Pentikaïnen, O. T. (2018). Structure-Activity relationship analysis of 3-Phenylcoumarin-Based monoamine oxidase B inhibitors. *Frontiers in Chemistry*, 6. <u>https://doi.org/10.3389/fchem.2018.00041</u>
- 17. Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. *Journal of Cheminformatics*, 1(1). <u>https://doi.org/10.1186/1758-2946-1-8</u>
- 18. McNamara, N., Rahmani, R., Sykes, M., Avery, V. M., & Baell, J. B. (2020). Hit-to-lead optimization of novel benzimidazole phenylacetamides as broad spectrum trypanosomacides. *RSC Medicinal Chemistry*, *11*(6), 685–695. https://doi.org/10.1039/d0md00058b
- 19. https://www.medicilon.com/press-events/discovery-and-optimization-of-lead-compounds/
- 20. https://research.csiro.au/ai4m/ai-for-drug-discovery-our-focus-on-emerging-infectious-diseases/
- 21. https://images.app.goo.gl/pRWStV1ytaqFHHds7