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REVIEW: What is proteomics?
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Proteomics : identify and quantify the proteome




QUIZ:

Why are protein levels important?



What biological processes are protein levels important?

Cyclin Expression Cycle SARS-COV

Concentration

Cerebral cortex
(executive function)

| FTD, AD, HD

Basal ganglia

(movement, reward) - Zhang etal 2010

G1 Phase

(PD, HD, AD, FTD)

Thalamus
(sensory gateway)

(FTD, AD, PD)

Hippocampus
(memory)
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Brain stem
(basic body function)

Spinal cord lamina IX
(muscle control and reflex)

Cerebellum
(balance, movement)
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Another review: What is the workflow of proteomics studies?

§ g i
CELL CULTURE OR TISSUE \

) EXTRACTION OF PROTEINS
Proteins for top-down analyses

come from a variety of sources. Proteins are extracted and
denatured.

)

SEPARATION OF PROTEINS

Proteins are separated, most often by
molecular weight, to reduce sample
AUTOMATED DATA ANALYSIS complexity and ensure maximal
. . e identification of intact proteins.
Intact proteins are identified in an
automated fashion using ProSightPC
software, including characterization
of post-translational modifications,

sequence polymorphisms, and o ANALYSIS BY LC-MS/MS
cleavage sites. Intact proteins are analyzed by

o LC-MS/MS on Orbitrap-based
T mass spectrometers.
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What are methods to study quantitative proteomics?
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Whatis iTRAQ ?

Isobaric tag for relative and absolute quantitation
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What are Quantitative ways to study proteomics ?

Control
Group L‘:\b W \
Chemical Label x@ | I | | I

8

Experiment
Group

Control ]
Group t:

Metabolic Label L §| I I | I
+X Da _

Experiment
Group




o remove white boxes and
ough this image

What is the general overview of SILAC?
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What is the Adaption Phase of SILAC?

light heavy
i
|// \ - amino acid essential for cell survival
Medium Preparation - arginine and lysine often used
- C13,N15, H2

Ong et aI., IVIOI Cell TTULEUITIILS , £UVUL



What is the experiment phase of SILAC?

mix cell disgest to LC-MS/MS
lysate peptides analysis
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What if you had multiple samples?

Multiplexed SILAC

Drug treatment (min):

Time 0 Time 2 Time 4

—— - &S

120614N4'Af9 130614N4°Al’9 130615N4'Am

~N |

Combine; isolate a subproteome
(example: nucleolus)

v

Intensity

Ong et al, Nat Chem Bio, 2005 e



What if you want to measure Post-Translational Modification?

Heavy Methyl SILAC
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How does SILAC compare to iTRAQ?

Advantage

accurate relative quantification

used on complex mixture of cells

Disadvantage

Amino Acid Interchange

Proline Arginine
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B
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NH H
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How to incorporate SILAC in my project?

sure 13 .
o Cg lysine
unlabeled mouse
‘ ® [ | o labeled mouse
PN | (Enad
+ Lys-6
week 1 | | week 2 | week 3 ] |
. 100 ¢ 100 ? 100 o 12
LVQEVTDFAK h
o
6D E‘
a
w1 P T Y
Lll lJlL 0 Ll 1 1 0 ll A ]1 0 ?: ----- = | " L
'3 - mz miz R miz 1 2 3 4 weeks

Kruger et al, 2008, Cell
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Summary

Control )“ “
Group )

Experiment

N

—~7 -

7

+X Da

X@ﬂgl

Group
mix cell disgest to LC-MS/MS
lysate peptides analysis
Control
Group
~~—
el s
+X Da
Experiment /
Group
s
\AYA WY g Jabel | RAAN g
AAS &4 -\ N\ |
\VAVAN *!
|

Peptides

Chemical Label

Metabolic labelling uses organism’s own metabolism to label
Where as chemical labelling introduce a chemical tag on peptides

SILAC metabolically labels samples and determine protein relative
abundance by Mass Spectrometry. SILAC measure methylation and
can measure multiple trials.

iTRAQ and SILAC 's advantages and disadvantages in
quantitative proteomics



How do we use SILAC to study neurodegenerative disorders?

Cerebral cortex
(executive function)

(FTD, AD, HD |

Basal ganglia
(movement, reward)

(PD, HD, AD, FTD)

Thalamus
(sensory gateway)

(FTD, AD, PD

Hippocampus
(memory)

m

Cerebellum
(balance, movement)

SCA

(basic body function)

Spinal cord lamina IX
(muscle control and reflex)




Quantitative interaction proteomics of
neurodegenerative disease proteins

Hosp, F, et al, 2015

By Kye Nichols March 31st,
2020



What are some examples of neurogenerative disorders?

Cerebral cortex
(executive function)

/ A
 FTD, AD, HD
\. J

- S

Basal ganglia
(movement, reward)

(PD, HD, AD, FTD)

Thalamus
/’ A : (sensory gateway)
l'\ — (FTD, AD, PD)
T Hippocampus
\ (memory)
g
T AD
Brain stem .
(basic body function) Cerebellum
(balance, movement)
(ALS, SCA |
SCA
Spinal cord lamina IX
(muscle control and reflex)

Alzheimer's Disease (AD), Parkinson’s Disease (PD), Huntington’s Disease (HD), Spinocerebellar Ataxia Type 1 (SCA1)



Memory Loss
Speech impairment

What are symptoms
found in these
neurodegenerative
disorders?




Why was qualitative proteomics used to study
neurodegenerative diseases?

Glial cell

g Proteostasis is important for
@ @ healthy neuronal function
- Y

Health



What are some molecular and cellular hallmarks of
neurodegenerative diseases?
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Changes in proteostasis can cause cause neurodegeneration
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What proteins are
linked to PARK2
neurodegeneration?

Amyloid aggregate

HTT

SCA1 |
ATANT UPSY Autophagyﬁranslation*

Proteostatic failure



What is the GAP in knowledge?

cell death

Cognitive and
behavioral
abnormalities

s B
/ﬁ

A

/ AICD

Construction of disease-associated protein interaction
networks is a major challenge




What are common and unique proteins associated with
neurOdegeneration? [quantitative protein-protein ) ( differential interactomes

interaction screen for NDD proteins
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Why is SILAC effective for studying neurodegeneration?
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Fig. 1A: How was SILAC used to identify unique proteins

associated with neurodegeneration?
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Fig. 1D: What are unique and shared interactions
between diseases according to online databases?
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Fig 1D: What binding partners were verified in
protein interaction screening?
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Fig. 1E: What cellular processes are bait proteins involved in?
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Fig. 1B: How was SILAC used to identify preferential
binding to Ataxin-1?
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Fig. 1C: How was SILAC used to identify preferential
binding to Ataxin-1 mutants?
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Fig. 2: How is neurodegeneration affected by Ataxin-1
mutations in Drosophila models?
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Fig. 3A: How does Gene Set Enrichment compare with
quantitative proteomic analysis?
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Fig. 3B: How does SNP enrichment signify NDD-

association?
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Fig. 4B: How did preferential binding behavior compare
between disease-associated variants?
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Relative Abundance

100

50

Fig. 5A: How does “Swedish” variant interact
compared to wildtype?
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Fig. 5B: Does the “Swedish” variant interact
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with LRPPRC compared to wildtype?
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Fig. 5C: How does the “Swedish” variant co-localize
with LRPPRC in cells?
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Proximity ligation assay (PLA) in HEK293T cells

Fig. 5D: How was differential _ ..
binding behavior verified - I I ]

independently from SILAC?

PLA signals / cell

o \
& (,\éo QQS) & Qcﬁ
& o Q Q Q
N & R ¥
&o Qc‘}’o 2 ¥
& Q\\\

Transfecting APPsw increased the signal compared to wild-type



What is a PLA assay?

Probe

Oligonucleotides

LRPPRC

= D

provides high specificity and sensitivity



Fig. SF: How do changes in protein binding domains
affect interaction? OLRPPRG & &+ s
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Fig. 5E: How did neurodegenerative-associated
protein interactions compare in human brain?
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Fig. 6A: How does
“Swedish” mutation
effect the proteome?

APPsw downregulated cellular levels
of LRPPRC and SLIRP
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Fig. 6B: How does Co- PILAC

expression of LRPPRC
effect these results?
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Fig. 6C: How might “Swedish” variants effect the
electron transport chain?

APPsw downregulates expression of

COX1 & LRPPRC

complex | complex Il complex Ill complex IV
NADH dehydrogenase succinate dehydrogenase cytochrome b complex cytochrome c oxidase
peindad 2k
ND4L7' ¢ \ \
-
\\

mitoribosome

complex V
ATP synthase

ﬁ,

linlss

relative mRNA levels

gRT-PCR
I LRPPRC
Bl CcoX1 |
1.5 1 *
1.0 7
0.5 1
0 -
B»
& & X &
& &K & ¥
& & v



Fig. 6D: How might “Swedish” variants effect oxidative
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Fig. 7: In summary, APP wild-type | APP-Swedish
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