

Jessica Thornton

What is proteomics?

What are proteins?

Primary Protein Structure

Sequence of a chain of amino acids

Secondary Protein Structure

Local folding of the polypeptide chain into helices or sheets

Tertiary Protein Structure

three-dimensional folding pattern of a protein due to side chain interactions

Quaternary Protein Structure

protein consisting of more than one amino acid chain

What does phosphorylation do?

What is the typical proteomics workflow?

What is the typical proteomics workflow?

How can we detect PTMs?

How do we quantitatively analyze proteins?

What is SILAC?

How do you perform SILAC?

Adaptation Phase

Experiment Phase

How can you use SILAC in mice?

How did the authors use SILAC?

Summary

Knowledge of proteins and their PTMs is important to know their function

Quantitative proteomics requires labeling of peptides

SILAC is a good way to label proteins in vivo

What is skin cancer?

Why study skin cancer?

Squamous cell carcinoma (SCC) is diagnosed in more than **1 million** Americans each year

1_{m+} 92_k

In 2018, melanoma will account for nearly **92,000** new cases of skin cancer

How can we model skin cancer?

How can we study the skin carcinogenesis proteome?

How well does the SILAC model label the proteome?

How accurate is this method across samples?

Phosphoproteome experiment

Can this method rediscover known cancer traits?

Can this method rediscover known cancer traits?

Differentiation markers

Is this a valid model for human skin carcinogenesis?

Mouse tissues

Is this a valid model for human skin carcinogenesis?

Human tissues

What changes throughout carcinogenesis?

What changes throughout carcinogenesis?

How are involved proteins related?

How are cell adhesion proteins affected in humans?

Are these networks similar in human skin carcinogenesis?

Is FSCN1 involved in skin SCC?

How did kinase regulation change throughout carcinogenesis?

Substrates predicted to be phosphorylated

How is PAK4 involved?

Do VASP, FSCN1, or PAK4 affect invasion?

So what's the point?

There are clear changes in the proteome and phosphoproteome during carcinogenesis

Cell-adhesion proteins are altered during carcinogenesis

The cell adhesion proteins, VASP, FSCN1, and PAK4, are important for SCC invasion

References

FIGURES:

- [1] https://www.glowm.com/section_view/heading/Pathology%20of%20Cervical%20Carcinoma/item/230
- [2] https://edu.t-bio.info/wp-content/uploads/2016/08/Omics-cascade.png
- [3] https://growersnetwork.org/cultivation/what-is-dna-what-is-a-gene-what-is-protein/
- [4] https://www.ptglab.com/news/blog/post-translational-modifications-an-overview/
- [5] https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(15)00196-4
- [6] https://bitesizebio.com/6016/how-does-mass-spec-work/
- [7] immunohistochemistry-(ihc)/apps-immunohistochemistry
- [8] https://www.europeanpharmaceuticalreview.com/news/70957/precision-nanosystems-named-one-british-columbias-fastest-growing-companies/
- [9] https://www.albert.io/learn/ap-biology/intermolecular-interactions-1/enzyme-activity-graph
- [10] https://www.researchgate.net/figure/Tandem-mass-spectrometry-MS-MS-of-posttranslational-modifications-PTMs-A-MS-MS-of_fig1_7009815
- [11] https://slideplayer.com/slide/10725521/
- [12] https://www.creative-proteomics.com/blog/index.php/stable-isotope-labeling-using-amino-acids-in-cell-culture-silac-principles-workflow-and-applications/
- [13] https://www.sciencedirect.com/science/article/pii/S0092867408006958#app2
- [14] https://www.everydayhealth.com/skin-cancer/types/
- [15] https://www.healthline.com/health/skin-cancer/facts-and-stats#16

ALL UN-REFERENCED FIGURES ARE FROM:

Zanivan, Sara, et al. "In Vivo SILAC-Based Proteomics Reveals Phosphoproteome Changes during Mouse Skin Carcinogenesis." *Cell Reports*, vol. 3, no. 2, 2013, pp. 552–566., doi:10.1016/j.celrep.2013.01.003.