Next Generation Sequencing Kerstin Hurd and Josh Pfeifer

FCQCIG.

nag

REVIEW

Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders

Bahareh Rabbani¹, Nejat Mahdieh¹, Kazuyoshi Hosomichi, Hirofumi Nakaoka and Ituro Inoue

What is DNA?

Genetic material essential for the growth and development of organisms

How do we go from DNA to a whole genome?

Who discovered DNA?

Timeline for genomic sequencing

What is Sanger sequencing?

Method for determining genetic sequence through "chain termination"

What is Next Generation Sequencing?

Method that sequences millions of fragments simultaneously

How does Pyrosequencing (454) work?

Pyrophosphate (PPI) released

PPI and adenosine 5' phosphosulfate (APS) make ATP

Light produced when the nucleotide matches the template

ATP and luciferin make oxyluciferin and light

How does sequencing by ligation (SOLiD) work?

AANNNZZZ

N N N Z Z Z

NNNZZZ

ATNNNZZZ

First base

Т

ACG

Fluorescent labeled molecules used to determine sequence

How does sequencing by synthesis (Illumina/Solexa) work?

A polymerase adds fluorescently tagged dNTPs to determine the sequence

What can we learn from sequencing?

Identify genetic variants with a link to disease

Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research

Michael F. Wangler, *.*,^{5,1} Shinya Yamamoto, *.*,^{5,**,1} Hsiao-Tuan Chao,^{†,*,††} Jennifer E. Posey,* Monte Westerfield,^{‡‡} John Postlethwait,^{‡‡} Members of the Undiagnosed Diseases Network (UDN),² Philip Hieter,^{§§} Kym M. Boycott,*** Philippe M. Campeau,^{†††} and Hugo J. Bellen*.^{‡,5,*}*.^{‡‡‡‡,3}

What are model organisms?

Important part in determining the molecular mechanisms of disease

How do model organisms facilitate disease diagnosis?

- Deep clinical phenotyping
- NGS
- Matching cases

- Phenotyping of mutant fish
- Similarities with humans
- Screens for potential drug targets

- Gene function conservation
- Functional effects of variants
- Uncover molecular mechanisms

What is the Undiagnosed Disease Program model?

Providing diagnoses for patients that have exhausted other diagnostic measures

What is the Undiagnosed Disease Network?

7 Clinical Sites 2 Sequencing Cores Model Organism Screening Center Metabolomics Core Coordination Center

How does the UDN use model organisms to facilitate disease diagnosis?

Model organisms are used to study relationship between gene, function, and variant

Summary

STEP 1: Extraction	STEP 2: Library Fragmentation PCR or RT-PCR Prep
	Fragmented DNA Amplicons Adapter Ligation PCR Adapters
	Sequencing Library
STEP 3: Sequencing	ore STEP 4: Analysis
	FAST Q Algo tasks BAM Sector Vocres VCF
	sprängistrugistuge regularizationen programmentariationen organizationen organizationen

Next generation sequencing is an important tool in characterizing disease

Model organisms play an important role in elucidating molecular mechanisms

The UDN uses both NGS and model organisms to help diagnose and treat undiagnosed diseases

Article

In vivo base editing rescues Hutchinson– Gilford progeria syndrome in mice

https://doi.org/10.1038/s41586-020-03086-7	Luke W. Koblan ^{1,2,3,13} , Michael R. Erdos ^{4,13} , Christopher Wilson ^{1,2,3} , Wayne A. Cabral ⁴ ,
Received: 9 June 2020	Jonathan M. Levy ^{1,2,3} , Zheng-Mei Xiong ⁴ , Urraca L. Tavarez ⁴ , Lindsay M. Davison ⁵ , Yantenew G. Gete ⁶ , Xiaojing Mao ⁶ , Gregory A. Newby ^{1,2,3} , Sean P. Doberty ⁵ , Narisu Narisu ⁴
Accepted: 30 November 2020	Quanhu Sheng ⁷ , Chad Krilow ⁴ , Charles Y. Lin ^{8,9,12} , Leslie B. Gordon ^{10,11} , Kan Cao ⁶ ,
Published online: 6 January 2021	Francis S. Collins ⁴ [™] , Jonathan D. Brown ⁵ [™] & David R. Liu ^{1,2,3} [™]
Check for updates	

What is progeria?

Hutchinson-Gilford progeria syndrome (HGPS)

Progressive genetic disorder caused by random mutation

How does progeria affect you?

What causes progeria?

C>T mutation causes 50bp mis-splicing that loses 50 amino acids in Lamin A protein

What labs are studying progeria?

National Human Genome Research Institute

David Liu, PhD

Michael Erdos, PhD

A to G base editors (ABE) C to T base editors (CBE) Identifying and validating potential therapeutics

References

Koblan LW, et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature. 2021 Jan 6. doi: 10.1038/s41586-020-03086-7.

Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders. Rabbani B, et al, J Hum Genet. 2012 Oct;57(10):621-32. doi: 10.1038/jhg.2012.91. Epub 2012 Jul 26. Review. PMID: 22832387 •

Model Organisms Facilitate Rare Disease Diagnosis and Therapeutic Research. Wangler MF, Y et al., Genetics. 2017 Sep;207(1):9-27. doi: 10.1534/genetics.117.203067. Review.

In Vivo Base Editing Rescues Hutchinson-Gilford Progeria Syndrome in Mice

Koblan et al., 2021

The mis-splicing of the LMNA ultimately causes progeria

Targeted single C->T point mutation that causes mis-splicing

How was Lamin A targeted for base editing?

Adenosine Base Editors (ABEs) convert A-T base pairs to G-C base pairs

How do ABEs convert A-T base pairs to G-C?

Adenine is converted to Inosine (pairs like Guanine)

How do ABEs convert A-T base pairs to G-C?

Adenine is converted to Inosine (pairs like Guanine)

Why would ABEs be effective?

Scaffidi, Misteli, 2005

Overexpression of wild-type does not rescue cell

Why ABEs vs. wild-type rescue?

Scaffidi, Misteli, 2005

Overexpression of wild-type does not rescue cell

Why ABEs vs. CRISPR?

Jiang, Doudna, 2017

CRISPR too random (indels), too non-specific

How were the ABEs tested in vitro?

Two developed fibroblast lines treated with ABEs using Lentivirus delivery

How effective were the ABEs in vitro in reducing mis-splicing?

8.1/4.4x reduction in mis-spliced LMNA transcripts

How effective were the ABEs in vitro in reducing mis-splicing?

8.1/4.4x reduction in mis-spliced LMNA transcripts

How effective were the ABEs in vitro in reducing progerin levels?

6.1/15x reduction in progerin levels

How accurate were the ABEs in vitro?

87-91% on target editing, >0.1% off target editing

How accurate were the ABEs in vitro?

87-91% on target editing, >0.1% off target editing

How accurate were the ABEs in vitro?

87-91% on target editing, >0.1% off target editing

How did the edited genomes resemble wild type cells?

Treated cells scored more positive Z-scores

How did the edited genomes resemble wild type cells?

How were the ABEs tested in vivo?

Transgenic progeria mice treated with ABEs via Adeno-associated Virus (AAV)

How effective were the ABEs in vivo over time?

Increased DNA-editing efficiency over time

How effective were the ABEs in vivo in reducing key progeria symptoms?

Rescued vascular smooth muscle cell (VSMC) loss and aortic periadventitial fibrosis

How effective were the ABEs in vivo in reducing key progeria symptoms?

Rescued vascular smooth muscle cell (VSMC) loss and aortic periadventitial fibrosis

How effective were the ABEs in vivo at reducing fat loss?

Reduced loss of adipose tissue

Was ABE treatment enough to significantly increase lifespan in vivo?

Massive increase in overall lifespan

Was ABE treatment enough to significantly increase lifespan in vivo?

Massive increase in overall lifespan

What were the concerns from in vivo ABE use?

Potential cause of tumors in five mice

What were the concerns from in vivo ABE use?

Potential cause of tumors in five mice

Were these concerns warranted?

Extensive testing showed otherwise (likely caused by trans-gene)

Were these concerns warranted?

Extensive testing showed otherwise (likely caused by trans-gene)

Were these concerns warranted?

Extensive testing showed otherwise (likely caused by trans-gene)

What research should be done moving forward?

m Condh (C.E) (Deplicate 1)

d

	moapan (Cy5) (Replicate 1)												_			~ *	1			-/ \								
Mouse ID#:	9498 Saline-injected mice	9500 liver tissue	9550	9504 AAV-injected mice	9485 liver tissue	9524	9485	9485 AAV-injected mice	9524 tumor tissue	9524	Female C57BL/6	Male C57BL/6	NTC		9498 Saline-injected mice	9500 liver tissue	9550	9504 AAV-injected mice	9485 liver tissue	9524	9485	9485 AAV-injected mice	9524 tumor tissue	9524	Female C57BL/6	Male C57BL/6	NTC	
														111														
Ct value:	24.92	24.47	23.26	24.29	22.42	21.36	22.90	21.61	20.59	20.31	23.00	23.81	38.03		34.11	31.58	31.18	33.50	31.20	31.16	31.48	30.76	32.40	31.64	N.D.	N.D.	N.D.	
	_		mA	ctb) (C	y5.	5)	(Re	plic	cate	ə 1))	_		_	h <i>R</i>	AB	25	(TE	≣X	615	5) (Re	plic	ate	1)	_	
	io e														e													
Mouse ID#:	498 Saline-injected m	500 liver tissue	1950 J	504 AAV-injected mice	485 liver tissue	524	485	485 AAV-injected mice	524 tumor tissue	524	emale C57BL/6	Aale C57BL/6	ITC		498 Saline-injected mic	500 liver tissue	1550	504 AAV-injected mice	485 liver tissue	524	485	485 AAV-injected mice	524 tumor tissue	524	emale C57BL/6	Aale C57BL/6	ITC	
Mouse ID#:	9498 Saline-injected m	9500 liver tissue	9550	9504 AAV-injected mice	9485 liver tissue	9524	9485	9485 AAV-injected mice	9524 tumor tissue	9524	Female C57BL/6	Male C57BL/6	NTC	111	9498 Saline-injected mic	9500 liver tissue	9550	9504 AAV-injected mice	9485 liver tissue	9524	9485	9485 AAV-injected mice	9524 tumor tissue	9524	Female C57BL/6	Male C57BL/6	NTC	

LOADOG (TEV OIE) (Deallante I)

Further investigation into mouse-specific testing (trans-genes, vector, health)

What research should be done moving forward?

d			mG	San	dh	(C)	(5)	(R	anli	cat	o 1	`				h		225	/T	=v	61	5)/	Pa	olic	ato	1)	
Mouse ID#:	9498 Saline-injected mice	9500 liver tissue	95501	9504 AAV-injected mice	9485 liver tissue	9524	9485	9485 AAV-injected mice	9524 tumor tissue	9524	Female C57BL/6	Male C57BL/6	NTC		9498 Saline-injected mice	9500 liver tissue	3550 J	9504 AAV-injected mice	9485 liver tissue	9524	9485	9485 AAV-injected mice	9524 tumor tissue	9524	Female C57BL/6	Male C57BL/6	NTC
	-			-			2		-	-	-	-		111		-	-	2	-			-	-	-			
Ct value:	24.92	24.47	23.26	24.29	22.42	21.36	22.90	21.61	20.59	20.31	23.00	23.81	38.03		34.11	31.58	31.18	33.50	31.20	31.16	31.48	30.76	32.40	31.64	N.D.	N.D.	N.D.
	_		mA	Actb) (C	cy5.	.5)	(Re	pli	cate	e 1))			_	h	RAB	325	(TE	EX	61	5) (Re	plic	ate	1)	
Mouse ID#:	3498 Saline-injected mice	3500 liver tissue	1550 J	504 AAV-injected mice	3485 liver tissue	9524	J485	3485 AAV-injected mice	524 tumor tissue	524	emale C57BL/6	Aale C57BL/6	VTC		3498 Saline-injected mice	500 liver tissue	1550 J	3504 AAV-injected mice	3485 liver tissue	524	9485	3485 AAV-injected mice	524 tumor tissue	9524	emale C57BL/6	Aale C57BL/6	VTC
	0	0	0,	0)	0)	0)	0)	0,	0,	0,		-	2	111	0,	0,	0,	0	5	0,	0,	0	0)	0,		~	2
Ct value:	27.11	27.20	24.48	26.82	23.85	23.55	23.31	24.07	24.20	23.81	23.97	24.75	N/A		34.11	31.58	31.18	33.50	31.20	31.16	31.48	30.76	32.40	31.64	N.D.	N.D.	N.D.

Further investigation into mouse-specific testing (trans-genes, vector, health)

How can these findings be applied?

Further investigation into clinical application (more efficient ABEs, treatment timing, conjunctive treatments)

Looking forward

Use of ABEs to target point mutation

Successful in reducing key symptoms, improving lifespan

Hope for clinical application, pairing with other treatments

Figure/Photo References

https://en.wikipedia.org/wiki/Adenine

https://en.wikipedia.org/wiki/Inosine

https://www.annualreviews.org/doi/10.1146/annurev-biophys-062215-010822?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1351119/

https://en.wikipedia.org/wiki/Farnesyltransferase_inhibitor

https://www.sciencenews.org/article/fda-approved-first-drug-treat-rapid-aging-disease-progeria

Various Biorender images