

What is transcription?

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

What is transcriptomics?

The study of the complete set of RNA transcripts

What molecules does transcriptomics study?

Messenger RNA (mRNA)

What can we discover through transcriptomics?

What methods are used to quantify the transcriptome?

Microarray

RNA Sequencing

How do microarrays work?

Містоаттау

How does RNA-Sequencing work?

How is the cDNA library created?

How is the cDNA library sequenced?

High Throughput Sequencing

Signal scanning

How is the data analyzed?

What is single-cell transcriptomics?

Single-cell transcriptional signatures identify cell populations

What are the advantages of RNA-seq?

High sensitivity for different expression levels
Low RNA input (~1 ng)
No reference transcripts required

Challenges?

What is Alzheimer's Disease (AD)?

Progressive disease developing memory loss and other cognitive abilities

ALZHEIMER'S

TOP 10 EARLY SIGNS

CHANGES IN MOOD

MISPLACING BELONGINGS

HARD TO COMPLETE FAMILIAR TASK

CONFUSION OF TIME AND PLACE

SOCIAL WITHDRAWAL

JUDGEMENT

STRUGGLING TO COMMUNICATE

CHANGES IN VISION

How does Alzheimer's progress?

What are Disease-Associated Microglia (DAM)?

Why use mice as a model organism?

5xFAD mouse model with 5 AD mutations

Summary

Transcriptomics is the study of the transcripts of genes.

Single-cell RNA sequence can be used to identify expression in distinct cell populations.

tSNE dim1

Alzheimer's disease is associated to the presence of a type of microglia: DAM.

A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease

Graphical Abstract

Authors

Hadas Keren-Shaul, Amit Spinrad, Assaf Weiner, ..., Marco Colonna, Michal Schwartz, Ido Amit

Correspondence

assaf.weiner@weizmann.ac.il (A.W.), michal.schwartz@weizmann.ac.il (M.S.), ido.amit@weizmann.ac.il (I.A.)

In Brief

A new type of microglia associated with restricting neurodegeneration may have important implications for treatment of Alzheimer's and related diseases.

What was the experimental setup?

Performed MARS-seq on mice cells

What cell type clusters did they discover?

Identified disease associated microglia (DAM)

What are the frequency differences?

What are the gene expression profiles?

What marker genes exist for DAM?

Identified genes differentially expressed in DAM

How common are **DAM** in AD progression?

Microglia progress to DAM as AD progresses

How does gene expression change in DAM?

Some genes upregulated some downregulated in DAM

Can gene expression changes in DAM be quantified?

Gene expression can be quantified during progression

Where are **DAM** localized?

DAM spatially located in cortex only of AD mice

How common are **DAM** in AD brains?

Significantly more DAM in AD that WT mouse brains

Are DAM and microglia markers co-expressed in AD?

AD single cells have co-expressed IBA1 and CD11c

Where are DAM localized in AD?

DAM localized in close proximity to plaque foci

Are DAM genes localized near plaques?

DAM specific genes expressed in microglia near plaques

Can DAM localization be quantified?

DAM (Csf1) are present in AD near Aβ plaques

Is the same localization pattern true for LPL?

DAM (LPL) are present in AD near Aβ plaques

Are DAM conserved in humans?

DAM are conserved in humans

Are DAM conserved in other neurodegenerative diseases?

DAM are conserved in ALS mice

What does ALS DAM gene expression look like?

ALS DAM have similar gene expression to AD

Do DAM increase with ALS progression?

DAM prevalence increases with ALS progression

How do microglia progress to DAM?

Microglia progress through an intermediate to DAM

What genes should be used to track activation?

Two form signaling complex

Trem2 associated with AD risk factors

How does Trem2 affect DAM progression in AD?

Trem2-/- in AD have mostly DAM stage 1 (intermediate)

How does Trem2 affect microglia gene expression?

The DAM program is similar to previously identified AD program

How does Trem2 affect DAM gene expression?

DAM are generated through two-step mechanism

Does gene expression differ between two stages?

Activated first by Trem2-independent pathway

Activated second by Trem2-dependent pathway

What does the two step activation mechanism involve?

Summary

DAM localized near Aβ plaques

DAM phagocytic and conserved in humans and other neurodegenerative diseases

DAM regulated through 2 step mechanism

References

Deczkowska, A., Keren-Shaul, H., Weiner, A., Colonna, M., Schwartz, M., & Amit, I. (2018). Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. *Cell*, *173*(5), 1073-1081. doi:10.1016/j.cell.2018.05.003

Haque, A., Engel, J., Teichmann, S. A., & Lönnberg, T. (2017). A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. *Genome Medicine*, *9*(1), 75. doi:doi:10.1186/s13073-017-0467-4

Introduction to Single-Cell RNA Sequencing - Olsen - 2018 - Current Protocols in Molecular Biology - Wiley Online Library. (2019). doi:10.1002/cpmb.57

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T. K., . . . Amit, I. (2017). A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. *Cell*, *169*(7), 1276-1290.e1217. doi:10.1016/j.cell.2017.05.018

Papalexi, E., & Satija, R. (2017). Single-cell RNA sequencing to explore immune cell heterogeneity. *Nature Reviews Immunology*, *18*(1), 35. doi:doi:10.1038/nri.2017.76

RNA-seq: general concept, goal and experimental design - part 1. (2019). Retrieved from https://www.slideshare.net/joachimjacob/1rna-seqpart1working-tothegoal

Sandberg, R. (2013). Entering the era of single-cell transcriptomics in biology and medicine. *Nature Methods, 11*(1), 22. doi:doi:10.1038/nmeth.2764

Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. *Nat Rev Genet, 10*(1), 57-63. doi:10.1038/nrg2484

What Is Alzheimer's? (n.d.). Retrieved from https://alz.org/alzheimers-dementia/what-is-alzheimers