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How does the proteome become complex?
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What is phosphorylation?
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The addition of a phosphate group onto a protein by a kinase



Why is phosphorylation important?
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@ What is phosphoproteomics?
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Why is (quantitative)
phosphoproteomlcs lmportant?
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How do we identify proteins?
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What information is derived from MS?
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What does this type of mass
spectrometer look like?

New advances of MS allow

rapid identification of
phosphorylation sites with

precision and sensitivity

} ~4.6 feet tall



How do you map phosphorylation sites?
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Issues complicating
phosphopeptide identification?
Phosphate moiety is susceptible to being broken down
Scarcity of phosphorylation within the protein of interest
Not always possible to identify the precise site of modification

Reliance on a single sequence-specific protease

And more!



What are the labeling methods?
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What is SILAC?

Stable Isotope Labeling
with Amino acids in Cell
culture

the most popular
metabolic labeling method

standard
SILAC

differences in
steady-state
levels

Intensity




How are SILAC cell pools
distinguishable by MS?
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b Experiment phase

Control Perturbed
State A (light ) State B (heavy %)
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vs. disadvantages of SILAC

Accurate relative quantification

No need for chemical derivatization or manipulation

Purification step does not affect relative
concentrations

Data analysis is easier
Adapted to almost any cell system

Challenging to perform in vivo
Protein loss due to mass spec



Skin carcinogenesis
Skin Pap  SCC

Why are SILAC labeled &2 L2 &2

mice useful?

Mix lysates

High resolution MS
l I phosphoproteomics

Phosphoproteomic dynamics in skin cancer
Why iS phOSphOprOteomiCS Benign—tumor (l?ap) Malignant tumor (SCC)
useful to study cancer? ¥
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In Vivo SILAC-Based
Proteomics Reveals %
Phosphoproteome

Changes during Mouse -, ¥
Skin Carcinogenesis WP

Zanivan et al 2013 Cell Rep. 2013 Feb 21
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https://www.ncbi.nlm.nih.gov/pubmed/23375375#

What is carcinogenesis ?



Mechanisms of carcinogensis

Therapeutic effect evaluation

| Chemoprevention |

Tomasetti C, Li L, Vogelstein B (23 March 2017)



are the stages?
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https://www.medicinenet.com/script/main/art.asp?articlekey=47299
https://www.medicinenet.com/script/main/art.asp?articlekey=47299

How does UV light initiate cancer?
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Differences between PAP and SCC
tumors?



Papilloma(Pap)
Benign epithelial growing
tumor
Grows slower
Spherical

shaped
outgrowth

Squamous Cell Carcinoma
(SCC)

SCC are the thin, flat cells considered
cancerous and appear in late onset

Grows
aggressively

Scaly red patches,
open sores, war
like,

or thick nodules




Why mouse models ?



Mouse Models

Long history and
supporting infrastructure

Complex disease can be
easily manipulated

Highcross-species
similarity with humans







Challenges R

DNA —> Genomics

Transcriptomics and gene
expression heavily use mRNA
expression levels

Protein—> Proteomics
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How were proteins and
phosphorylated sites
identified?



SILAC Lysate mixture is separated by
SDS-PAGE

SCX-TIO2 chromatography used to
fractionate peptides

Filter aided sample preparation
Liquid Chromatography and Orbitrap

MS to analyze peptide fractions
MaxQuant/ Andromeda data analysis
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How did they induce carcinogenesis?

CHs ‘ 7,12-Dimethylbenz(a)anthracene

CH3 Papilloma

Ke ratinocytes
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Ha-ras mutation Clonal expan-  Benign papilloma Squamous cell
Phenotypically sion of initiated carcinoma
n0rma| epldermIS Ce“S by Nancy Heim, Columbia University, and Brooke Grindlinger, J. Clin. Invest.




How is the Hras pathway involved in fumor growt
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How did they isolate cell tissue?
Lysed in 4% SDS, 100 mM

:> ? lysis buffer. Mixed 1:1
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within a 4-fold ratio
compared to the SILAC

skin.
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How were peptides quantified?
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ow does “Spike in” SILAC differ?

/ l \ SILAC
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How were cancer
stage classifications
identified?



Laminin 332

(A) Confocal images of frozen sections of TPA, Pap, and SCC stained for laminin 332

Laminin 332 receptor integrin 31 was upregulated specifically in SCC as most of
the proteins of the cell adhesion subnetwork. Intriguingly, most of these proteins,
including Fscn1, are functionally and physically connected to the actin
cytoskeleton that is a critical regulator of cancer cell maotility and invasion.



How did the protein and
phosphorylation sites differ among
groups?



Quantified phosphorylation sites
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How did the proteomic study reinforce
previous molecular mechanisms in
tumorigenesis?



GO Biological Processes

Cell adhesion
Immune system process
Cell cycle

Metabalic process
Generation of precursor

metabolites and energy
Developmental process

Homeoslatic process

Response to stimulus
Reproduction

System process

Apoptosis

Cellular component organization
Transport

Cellular process

Cell communication

GO Molecular Function
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How do kinase activities look in the mouse tumors?



Downregulation




Upregulation
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ot
B Quantified phosphorylation sites
_ 9000 "

Proteomic analysis identified clear and distinct differences in
protein expression levels between normal keratinocytes and tumor
cells

Proteomic data strongly highlights PAK4-PKC/SRC subnetwork
with cell adhesion

Spike In SILAC Technology helps extend the approach to other
mouse models and human tumors

Upregulation

Metabolic process Cell adhesion
(rucieot

Experimental set-up provides advantages for proteomic proteomics
quantification and interpretation




